
Simulink® PLC Coder™

User's Guide

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® PLC Coder™ User's Guide
© COPYRIGHT 2010–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2010 Online only New for Version 1.0 (Release 2010a)
September 2010 Online only Revised for Version 1.1 (Release 2010b)
April 2011 Online only Revised for Version 1.2 (Release 2011a)
September 2011 Online only Revised for Version 1.2.1 (Release 2011b)
March 2012 Online only Revised for Version 1.3 (Release 2012a)
September 2012 Online only Revised for Version 1.4 (Release 2012b)
March 2013 Online only Revised for Version 1.5 (Release 2013a)
September 2013 Online only Revised for Version 1.6 (Release 2013b)
March 2014 Online only Revised for Version 1.7 (Release 2014a)
October 2014 Online only Revised for Version 1.8 (Release 2014b)
March 2015 Online only Revised for Version 1.9 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)
March 2016 Online only Revised for Version 2.1 (Release 2016a)

v

Contents

Getting Started
1

Simulink PLC Coder Product Description 1-2
Key Features . 1-2

PLC Code Generation in the Development Process 1-3
Expected Users . 1-3
Glossary . 1-4
System Requirements . 1-4

Supported IDE Platforms . 1-5

PLC Code Generation Workflow . 1-6

Prepare Model for Structured Text Generation 1-7
Tasking Mode . 1-7
Solvers . 1-7
Configuring Simulink Models for Structured Text Code

Generation . 1-7
Checking System Compatibility for Structured Text Code

Generation . 1-11

Generate and Examine Structured Text Code 1-14
Generate Structured Text from the Model Window 1-14
Generate Structured Text with the MATLAB Interface 1-16
View Generated Code . 1-17

Propagate Block Descriptions to Code Comments 1-19

Files Generated with Simulink PLC Coder 1-20

Specify Custom Names for Generated Files 1-23

vi Contents

Import Structured Text Code Automatically 1-24
PLC IDEs That Qualify for Importing Code Automatically . 1-24
Generate and Automatically Import Structured Text Code . 1-24
Troubleshoot Automatic Import Issues 1-25

Simulation and Code Generation of Motion Instructions . . 1-28
Workflow for Using Motion Instructions in Model 1-28
Library of Motion Instructions . 1-30
Data Types for Motion Instructions 1-31
Limitations for MAM Instruction . 1-31

Mapping Simulink Semantics to Structured Text
2

Generated Code Structure for Simple Simulink
Subsystems . 2-2

Generated Code Structure for Reusable Subsystems 2-4

Generated Code Structure for Triggered Subsystems 2-6

Generated Code Structure for Stateflow Charts 2-8
Stateflow Chart with Event Based Transitions 2-8
Stateflow Chart with Absolute Time Temporal Logic 2-10

Generated Code Structure for MATLAB Function Block . . 2-13

Generated Code Structure for Multirate Models 2-15

Generated Code Structure for Subsystem Mask
Parameters . 2-17

Global Tunable Parameter Initialization for PC WORX . . . 2-22

vii

Generating Test Bench Code
3

How Test Bench Verification Works . 3-2

Integrate Generated Code into Custom Code 3-3

Import and Verify Structured Text Code 3-4
Generate, Import, and Verify Structured Text 3-4
Import and Verify Structured Text to KW-Software

MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0
IDEs . 3-5

Verify Generated Code with Multiple Test Benches 3-7
Troubleshooting: Test Data Exceeds Target Data Size 3-9

Code Generation Reports
4

Information in Code Generation Reports 4-2

Create and Use Code Generation Reports 4-4
Generate a Traceability Report from Configuration

Parameters . 4-4
Keep the Report Current . 4-6
Trace from Code to Model . 4-7
Trace from Model to Code . 4-8
Model Web View in Code Generation Report 4-10
Generate a Static Code Metrics Report 4-13
Generate a Traceability Report from the Command Line . . . 4-14

View Requirements Links from Generated Code 4-16

Working with the Static Code Metrics Report 4-17
Workflow for Static Code Metrics Report 4-17
Report Contents . 4-18
Function Block Information . 4-19

viii Contents

Working with Tunable Parameters in the Simulink
PLC Coder Environment

5
Block Parameters in Generated Code 5-2

Control Appearance of Block Parameters in Generated
Code . 5-5

Configure Tunable Parameters with Simulink.Parameter
Objects . 5-5

Make Parameters Tunable Using Configuration Parameters
Dialog Box . 5-8

Controlling Generated Code Partitions
6

Generate Global Variables . 6-2

Control Code Partitions for Subsystem Block 6-3
Control Code Partitions Using Subsystem Block Parameters . 6-3
One Function Block for Atomic Subsystems 6-5
One Function Block for Virtual Subsystems 6-6
Multiple Function Blocks for Nonvirtual Subsystems 6-7

Control Code Partitions for MATLAB Functions in Stateflow
Charts . 6-9

Integrating Externally Defined Symbols
7

Integrate Externally Defined Symbols 7-2

Integrate Custom Function Block in Generated Code 7-3

ix

IDE-Specific Considerations
8

Integrate Generated Code with Existing Projects in Siemens
IDEs . 8-2

Integrate Generated Code with Siemens SIMATIC STEP 7
Projects . 8-2

Integrate Generated Code with Siemens TIA Portal Projects . 8-2

Use Internal Signals for Debugging in RSLogix 5000 IDE . . 8-4

Rockwell Automation RSLogix Considerations 8-6
Add-On Instruction and Function Blocks 8-6
Double-Precision Data Types . 8-6
Unsigned Integer Data Types . 8-6
Unsigned Fixed-Point Data Types . 8-6
Enumerated Data Types . 8-7

Considerations for Siemens IDEs . 8-8
Double-Precision Floating-Point Data Types 8-8
int8 and Unsigned Integer Types . 8-8
Unsigned Fixed-Point Data Types . 8-8
Enumerated Data Types . 8-9

Supported Simulink and Stateflow Blocks
9

Supported Blocks . 9-2
View Supported Blocks Library . 9-2
Supported Simulink Blocks . 9-3
Supported Stateflow Blocks . 9-11
Blocks With Restricted Support . 9-12

x Contents

Limitations
10

Coder Limitations . 10-2
Current Limitations . 10-2
Fixed-Point Data Type Limitations 10-2
Multirate Model Limitations . 10-4
Permanent Limitations . 10-5

Functions — Alphabetical List
11

Configuration Parameters for Simulink PLC Coder
Models

12
PLC Coder: General . 12-2

PLC Coder: General Tab Overview 12-3
Target IDE . 12-4
Show full target list . 12-7
Target IDE Path . 12-9
Code Output Directory . 12-11
Generate testbench for subsystem 12-12

PLC Coder: Comments . 12-13
Comments Overview . 12-14
Include comments . 12-14
Include block description . 12-15
Simulink block / Stateflow object comments 12-16
Show eliminated blocks . 12-17

PLC Coder: Optimization . 12-18
Optimization Overview . 12-18
Signal storage reuse . 12-19
Remove code from floating-point to integer conversions that

wraps out-of-range values . 12-21

xi

Loop unrolling threshold . 12-22

PLC Coder: Symbols . 12-23
Symbols Overview . 12-24
Maximum identifier length . 12-25
Use the same reserved names as Simulation Target 12-26
Reserved names . 12-27
Externally Defined Symbols . 12-28
Preserve Alias Type Names for Data Types 12-28

PLC Coder: Report . 12-31
Report Overview . 12-31
Generate traceability report . 12-31
Generate model Web view . 12-33

1

Getting Started

• “Simulink PLC Coder Product Description” on page 1-2
• “PLC Code Generation in the Development Process” on page 1-3
• “Supported IDE Platforms” on page 1-5
• “PLC Code Generation Workflow” on page 1-6
• “Prepare Model for Structured Text Generation” on page 1-7
• “Generate and Examine Structured Text Code” on page 1-14
• “Propagate Block Descriptions to Code Comments” on page 1-19
• “Files Generated with Simulink PLC Coder” on page 1-20
• “Specify Custom Names for Generated Files” on page 1-23
• “Import Structured Text Code Automatically” on page 1-24
• “Simulation and Code Generation of Motion Instructions” on page 1-28

1 Getting Started

1-2

Simulink PLC Coder Product Description
Generate IEC 61131-3 Structured Text for PLCs and PACs

Simulink® PLC Coder™ generates hardware-independent IEC 61131-3 Structured Text
from Simulink models, Stateflow® charts, and MATLAB® functions. The Structured Text
is generated in PLCopen XML and other file formats supported by widely used integrated
development environments (IDEs) including 3S-Smart Software Solutions CODESYS,
Rockwell Automation® Studio 5000, Siemens® TIA Portal, and OMRON® Sysmac® Studio.
As a result, you can compile and deploy your application to numerous programmable
logic controller (PLC) and programmable automation controller (PAC) devices.

Simulink PLC Coder generates test benches that help you verify the Structured Text
using PLC and PAC IDEs and simulation tools. It also provides code generation reports
with static code metrics and bidirectional traceability between model and code. Support
for industry standards is available through IEC Certification Kit (for IEC 61508 and IEC
61511).

Key Features

• Automatic generation of IEC 61131-3 Structured Text
• IDE support, including 3S-Smart Software Solutions CODESYS, Rockwell

Automation Studio 5000, Siemens TIA Portal, OMRON Sysmac Studio, and PLCopen
XML

• Simulink support, including reusable subsystems, PID controller blocks, and lookup
tables

• Stateflow support, including state machines, graphical functions, and truth tables
• MATLAB support, including if-else statements, loop constructs, and math operations
• Support for multiple data types, including Boolean, integer, enumerated, and floating-

point, as well as vectors, matrices, buses, and tunable parameters
• Test bench creation

http://www.mathworks.com/products/iec-61508/

 PLC Code Generation in the Development Process

1-3

PLC Code Generation in the Development Process

Simulink PLC Coder software lets you generate IEC 61131-3 compliant Structured Text
code from Simulink models. This software brings the Model-Based Design approach
into the domain of PLC and PAC development. Using the coder, system architects
and designers can spend more time fine-tuning algorithms and models through rapid
prototyping and experimentation, and less time on coding PLCs.

Typically, you use a Simulink model to simulate a design for realization in a PLC.
Once satisfied that the model meets design requirements, run the Simulink PLC Coder
compatibility checker utility. This utility verifies compliance of model semantics and
blocks for PLC target IDE code generation compatibility. Next, invoke the Simulink PLC
Coder tool, using either the command line or the graphical user interface. The coder
generates Structured Text code that implements the design embodied in the model.

Usually, you also generate a corresponding test bench. You can use the test bench
with PLC emulator tools to drive the generated Structured Text code and evaluate its
behavior.

The test bench feature increases confidence in the generated code and saves time spent
on test bench implementation. The design and test process are fully iterative. At any
point, you can return to the original model, modify it, and regenerate code.

At completion of the design and test phase of the project, you can easily export the
generated Structure Text code to your PLC development environment. You can then
deploy the code.

Expected Users

The Simulink PLC Coder product is a tool for control and algorithm design and test
engineers in the following applications:

• PLC manufacturing
• Machine manufacturing
• Systems integration

You should be familiar with:

• MATLAB and Simulink software and concepts
• PLCs

1 Getting Started

1-4

• Structured Text language

If you want to download generated code to a PLC IDE, you should also be familiar
with your chosen PLC IDE platform. For a list of these platforms, see “Supported IDE
Platforms” on page 1-5.

Glossary

Term Definition

PAC Programmable automation controller.
PLC Programmable logic controller.
IEC 61131-3 IEC standard that defines the Structured Text language for which the

Simulink PLC Coder software generates code.
PLCopen Vendor- and product-independent organization that works with the

IEC 61131-3 standard. The Simulink PLC Coder product can generate
Structured Text using the PLCopen XML standard format. See http://
www.plcopen.org/pages/tc6_xml/xml_intro/index.htm for details.

Structured Text High-level textual language defined by IEC 61131-3 standard for the
programming of PLCs.

function block Structured Text language programming concept that allows the
encapsulation and reuse of algorithmic functionality.

System Requirements

For a list of related products, see System Requirements at the MathWorks® website.

http://www.plcopen.org/pages/tc6_xml/xml_intro/index.htm
http://www.plcopen.org/pages/tc6_xml/xml_intro/index.htm
http://www.mathworks.com/products/sl-plc-coder/requirements.html

 Supported IDE Platforms

1-5

Supported IDE Platforms

The Simulink PLC Coder product is tested with the following IDE platforms:

• 3S-Smart Software Solutions CoDeSys Version 2.3 or 3.3 or 3.5 (SP4 or later)
• B&R Automation Studio® 3.0 or 4
• Beckhoff® TwinCAT® 2.11 or 3
• KW-Software MULTIPROG® 5.0 or 5.5

The Simulink PLC Coder software supports only the English version of KW-Software
MULTIPROG target IDE.

• OMRON Sysmac Studio Version 1.04, 1.05, 1.09 or 1.12
• Phoenix Contact® PC WORX™ 6.0

The Simulink PLC Coder software supports only the English version of Phoenix
Contact PC WORX target IDE.

• Rexroth IndraWorks version 13V12 IDE
• Rockwell Automation RSLogix™ 5000 Series Version 17, 18, 19 or 20 and Rockwell

Studio 5000 Version 21 or 24

Simulink PLC Coder can generate code for Add-On instructions (AOIs) and routine
code. The software supports automatic import and verification of generated code only
for the RSLogix IDEs and not the Studio 5000 IDE.

• Siemens SIMATIC® STEP® 7 Version 5.4 or 5.5

The Simulink PLC Coder software assumes that English systems use English S7. It
assumes that German systems use German S7.

• Siemens TIA Portal V13
• Generic
• PLCopen XML

For a list of supported IDEs and platforms, see Supported IDEs at the MathWorks
website.

http://www.mathworks.com/hardware-support/index.html?q=%20product:%22Simulink+PLC+Coder%22

1 Getting Started

1-6

PLC Code Generation Workflow

Your basic Simulink PLC Coder workflow is:

1 Define and design a Simulink model from which you want to generate code.
2 Identify the model components for which you want to generate code for importing to

a PLC.
3 Place the components in a Subsystem block.
4 Identify your target PLC IDE.
5 Select a solver.
6 Configure the Subsystem block to be atomic.
7 Check that the model is compatible with the Simulink PLC Coder software.
8 Simulate your model.
9 Configure model parameters to generate code for your PLC IDE.
10 Examine the generated code.
11 Import code to your PLC IDE.

 Prepare Model for Structured Text Generation

1-7

Prepare Model for Structured Text Generation

In this section...

“Tasking Mode” on page 1-7
“Solvers” on page 1-7
“Configuring Simulink Models for Structured Text Code Generation” on page 1-7
“Checking System Compatibility for Structured Text Code Generation” on page 1-11

Tasking Mode

This step is only required if your Simulink model contains multi-rate signals. If your
Simulink model does not contain multi-rate signals, you may proceed to solver selection.

Simulink PLC Coder only generates code for single-tasking subsystems. For multi-
rate subsystems, you must first explicitly set the tasking mode to single-tasking before
selecting a solver. In the model configuration, on the Solver pane, for the option Tasking
mode for periodic sample times, select SingleTasking.

Solvers

Choose a solver for your Simulink PLC Coder model.

Model Solver Setting

Variable-step Use a continuous solver. Configure a fixed sample time for the
subsystem for which you generate code.

Fixed-step Use a discrete fixed-step solver.

Configuring Simulink Models for Structured Text Code Generation

You must already have a model for which you want to generate and import code to a PLC
IDE. Before you use this model, perform the following steps.

1 In the Command Window, open your model.

1 Getting Started

1-8

2 Configure the model to use the fixed-step discrete solver. Select Simulation >
Model Configuration Parameters and in the Solver pane, set Type to Fixed-
step and Solver to discrete (no continuous states).

If your model uses a continuous solver, has a subsystem, configure a fixed sample
time for the subsystem for which you generate code.

3 Save this model as plcdemo_simple_subsystem1.
4 Create a subsystem containing the components for which you want to generate

Structured Text code.

 Prepare Model for Structured Text Generation

1-9

Optionally, rename In1 and Out1 to U and Y respectively. This operation results in a
subsystem like the following figure:

5 Save the model with the new subsystem.
6 In the top-level model, right-click the Subsystem block and select Block

Parameters (Subsystem).
7 In the resulting block dialog box, select Treat as atomic unit.

1 Getting Started

1-10

8 Click OK.
9 Simulate your model.
10 Save your model. In later procedures, you can use either this model, or the

plcdemo_simple_subsystem model that comes with your software.

You are now ready to:

 Prepare Model for Structured Text Generation

1-11

• Set up your subsystem to generate Structured Text code. See “Checking System
Compatibility for Structured Text Code Generation” on page 1-11.

• Generate Structured Text code for your IDE. See “Generate and Examine Structured
Text Code” on page 1-14.

Checking System Compatibility for Structured Text Code Generation

You must already have a model that you have configured to work with the Simulink PLC
Coder software.

1 In your model, navigate to the subsystem for which you want to generate code.
2 Right-click that Subsystem block and select PLC Code > Check Subsystem

Compatibility.

The coder checks whether your model satisfies the Simulink PLC Coder criteria.
When the checking is complete, a View diagnostics hyperlink appears at the
bottom of the model window. Click this hyperlink to open the Diagnostic Viewer
window.

If the subsystem is not atomic, right-click the Subsystem block and select PLC
Code, which prompts Enable “Treat as atomic unit” to generate code.

1 Getting Started

1-12

This command opens the block parameter dialog box. Select Treat as atomic unit.

 Prepare Model for Structured Text Generation

1-13

You are now ready to generate Structured Text code for your IDE. See “Generate and
Examine Structured Text Code” on page 1-14.

1 Getting Started

1-14

Generate and Examine Structured Text Code

In this section...

“Generate Structured Text from the Model Window” on page 1-14
“Generate Structured Text with the MATLAB Interface” on page 1-16
“View Generated Code” on page 1-17

Generate Structured Text from the Model Window

You must already have set up your environment and Simulink model to use the Simulink
PLC Coder software to generate Structured Text code. If you have not yet done so, see
“Prepare Model for Structured Text Generation” on page 1-7.

1 If you do not have the plcdemo_simple_subsystem model open, open it now.
2 Right-click the Subsystem block and select PLC Code > Options.

The Configuration Parameters dialog box is displayed.

 Generate and Examine Structured Text Code

1-15

3 On the PLC Code Generation pane, select an option from the Target IDE list, for
example, 3S CoDeSys 2.3.

The default Target IDE list shows a reduced subset of targets. To customize this
list, use the plccoderpref function. To see all target IDEs supported by Simulink
PLC Coder, select Show full target list.

4 Click Apply.
5 Click Generate code.

This button:

• Generates Structured Text code (same as the PLC Code > Generate Code for
Subsystem option)

1 Getting Started

1-16

• Stores generated code in model_name.exp (for example,
plcdemo_simple_subsystem.exp)

When code generation is complete, a View diagnostics hyperlink appears at the
bottom of the model window. Click this hyperlink to open the Diagnostic Viewer
window.

This window has links that you can click to open the associated files. For more
information, see “Files Generated with Simulink PLC Coder” on page 1-20.

Generate Structured Text with the MATLAB Interface

You can generate Structured Text code for a subsystem in the Command Window with
the plcgeneratecode function. You must have already configured the parameters for
the model or, alternatively, you may use the default settings.

For example, to generate code from the SimpleSubsystem subsystem in the
plcdemo_simple_subsystem model:

1 Open the plcdemo_simple_subsystem model:

plcdemo_simple_subsystem

2 Open the Configuration Parameters dialog box using the plcopenconfigset
function:

plcopenconfigset('plcdemo_simple_subsystem/SimpleSubsystem')

 Generate and Examine Structured Text Code

1-17

3 Select a target IDE.
4 Configure the subsystem as described in “Prepare Model for Structured Text

Generation” on page 1-7.
5 Generate code for the subsystem:

generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

View Generated Code

After generating the code, you can view it in the MATLAB Editor. For a description
of how the generated code for the Simulink components map to Structured Text
components, see “PLC Code Generation Basics”. In addition, note the following:

• Matrix data types: The coder converts matrix data types to single-dimensional vectors
(column-major) in the generated Structured Text.

• Generated code header: If your model has author names, creation dates, and model
descriptions, the generated code contains these items in the header comments. The
header also lists fundamental sample times for the model and the subsystem block for
which you generate code.

• Code comments: You can choose to propagate block descriptions to comments in
generated code. See “Propagate Block Descriptions to Code Comments” on page
1-19.

The figure illustrates generated code for the CoDeSys Version 2.3 PLC IDE. Generated
code for other platforms, such as Rockwell Automation RSLogix 5000, is in XML or other
format and looks different.

1 Getting Started

1-18

If you are confident that the generated Structured Text is good, optionally change
your workflow to automatically generate and import code to the target IDE. For more
information, see “Import Structured Text Code Automatically” on page 1-24.

 Propagate Block Descriptions to Code Comments

1-19

Propagate Block Descriptions to Code Comments

You can propagate block descriptions from the model to comments in your generated
code.

For specific IDEs, you can propagate the block descriptions into specific XML tags in the
generated code. The IDEs use the tags to create a readable description of the function
blocks in the IDE.

• For Rockwell Automation RSLogix 5000 AOI/routine target IDEs, the coder
propagates block descriptions from the model into the L5X AdditionalHelpText
XML tag. The IDE can then import the tag as part of AOI and routine definition in
the generated code.

• For CoDeSys 3.5 IDE, the coder propagates block descriptions from the model into the
documentation XML tag. When you import the generated code into the CoDeSys 3.5
IDE, the IDE parses the content of this tag and provides readable descriptions of the
function blocks in your code.

To propagate block descriptions to comments:

1 Enter a description for the block.

a Right-click the block for which you want to write a description and select
Properties.

b On the General tab, enter a block description.
2 Before code generation, specify that block descriptions must propagate to code

comments.

a Right-click the subsystem for which you are generating code and select PLC
Code > Options.

b Select the option “Include block description” on page 12-15.

Your block description appears as comments in the generated code.

1 Getting Started

1-20

Files Generated with Simulink PLC Coder

The Simulink PLC Coder software generates Structured Text code and stores it according
to the target IDE platform. These platform-specific paths are default locations for the
generated code. To customize generated file names, see “Specify Custom Names for
Generated Files” on page 1-23.

Platform Generated Files

3S-Smart
Software
Solutions
CoDeSys 2.3

current_folder\plcsrc\model_name.exp — Structured Text file for
importing to the target IDE.

3S-Smart
Software
Solutions
CoDeSys 3.3

current_folder\plcsrc\model_name.xml — Structured Text file for
importing to the target IDE.

3S-Smart
Software
Solutions
CoDeSys 3.5

current_folder\plcsrc\model_name.xml — Structured Text file for
importing to the target IDE.

B&R
Automation
Studio IDE

The following files in current_folder\plcsrc\model_name — Files for
importing to the target IDE:

• Package.pkg — (If test bench is generated) Top-level package file for
function blocks library and test bench main program in XML format.

In the main folder (if test bench is generated):

• IEC.prg — Test bench main program definition file in XML format.
• mainInit.st — Text file. Test bench init program file in Structured Text.
• mainCyclic.st — Text file. Test bench cyclic program file in Structured

Text.
• mainExit.st — Text file. Test bench exit program file in Structured Text.
• main.typ — Text file. Main program type definitions file in Structured Text.
• main.var — Text file. Main program variable definitions file in Structured

Text.

 Files Generated with Simulink PLC Coder

1-21

Platform Generated Files

Beckhoff
TwinCAT 2.11

current_folder\plcsrc\model_name.exp — Structured Text file for
importing to the target IDE.

KW-Software
MULTIPROG
5.0

current_folder\plcsrc\model_name.xml — Structured Text file, in XML
format, for importing to the target IDE.

Phoenix
Contact PC
WORX 6.0

current_folder\plcsrc\model_name.xml — Structured Text file, in XML
format, for importing to the target IDE.

Rockwell
Automation
RSLogix 5000
IDE: AOI

current_folder\plcsrc\model_name.L5X — (If test bench is generated)
Structured Text file for importing to the target IDE using Add-On Instruction
(AOI) constructs. This file is in XML format and contains the generated
Structured Text code for your model.

Rockwell
Automation
RSLogix 5000
IDE: Routine

current_folder\plcsrc\model_name.L5X — (If test bench is generated)
Structured Text file for importing to the target IDE using routine constructs. This
file is in XML format and contains the generated Structured Text code for your
model.

In current_folder\plcsrc\model_name (if test bench is not generated), the
following files are generated:

• subsystem_block_name.L5X — Structured Text file in XML format.
Contains program tag and UDT type definitions and the routine code for the
top-level subsystem block.

• routine_name.L5X — Structured Text files in XML format. Contains routine
code for other subsystem blocks.

Siemens
SIMATIC
STEP 7 IDE

current_folder\plcsrc\model_name\model_name.scl — Structured Text
file for importing to the target IDE.

current_folder\plcsrc\model_name\model_name.asc — (If test bench
is generated) Text file. Structured Text file and symbol table for generated test
bench code.

Siemens TIA
Portal IDE

current_folder\plcsrc\model_name\model_name.scl — Structured Text
file for importing to the target IDE.

1 Getting Started

1-22

Platform Generated Files

Generic current_folder\plcsrc\model_name.st — Pure Structured Text file. If
your target IDE is not available for the Simulink PLC Coder product, consider
generating and importing a generic Structured Text file.

PLCopen XML current_folder\plcsrc\model_name.xml — Structured Text file formatted
using the PLCopen XML standard. If your target IDE is not available for the
Simulink PLC Coder product, but uses a format like this standard, consider
generating and importing a PLCopen XML Structured Text file.

 Specify Custom Names for Generated Files

1-23

Specify Custom Names for Generated Files

The Simulink PLC Coder software generates Structured Text code and stores it according
to the target IDE platform. These platform-specific paths are default locations for the
generated code. For more information, see “Files Generated with Simulink PLC Coder”
on page 1-20.

To specify a different name for the generated files, set the Function name options
parameter in the Subsystem block:

1 Right-click the Subsystem block for which you want to generate code and select
Subsystem Parameters.

2 In the Main tab, select the Treat as atomic unit check box.
3 Click the Code Generation tab.
4 From the Function Packaging parameter list, select either Nonreusable

function or Reusable Function.

These options enable the Function name options and File name options
parameters.

5 Select the option that you want to use for generating the file name.

Function name options Generated File Name

Auto Default. Uses the model name, as listed
in “Prepare Model for Structured Text
Generation” on page 1-7, for example,
plcdemo_simple_subsystem.

Use subsystem name Uses the subsystem name, for example,
SimpleSubsystem.

User specified Uses the custom name that you specify
in the Function name parameter, for
example, SimpleSubsystem.

1 Getting Started

1-24

Import Structured Text Code Automatically

In this section...

“PLC IDEs That Qualify for Importing Code Automatically” on page 1-24
“Generate and Automatically Import Structured Text Code” on page 1-24
“Troubleshoot Automatic Import Issues” on page 1-25

PLC IDEs That Qualify for Importing Code Automatically

If you are confident that your model produces Structured Text that does not require
visual examination, you can generate and automatically import Structured Text code to
one of the following target PLC IDEs:

• 3S-Smart Software Solutions CoDeSys Version 2.3
• KW-Software MULTIPROG Version 5.0
• Phoenix Contact PC WORX Version 6.0
• Rockwell Automation RSLogix 5000 Version 17, 18, or 19

For the Rockwell Automation RSLogix routine format, you must generate testbench
code for automatic import and verification.

• Siemens SIMATIC STEP 7 Version 5.4 only for the following versions:

• Siemens SIMATIC Manager: Version V5.4+SP5+HF1, Revision K5.4.5.1
• S7-SCL: Version V5.3+SP5, Revision K5.3.5.0
• S7-PLCSIM: Version V5.4+SP3, Revision K5.4.3.0

Working with the default CoDeSys Version 2.3 IDE should require additional changes
for only the KW-Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0 IDE.
For information about automatically importing Structured Text code to these IDEs,
see “Import and Verify Structured Text to KW-Software MULTIPROG 5.0 and Phoenix
Contact PC WORX 6.0 IDEs” on page 3-5.

Generate and Automatically Import Structured Text Code

You can generate and automatically import Structured Text code. Before you start:

• In the target IDE, save your current project.

 Import Structured Text Code Automatically

1-25

• Close open projects.
• Close the target IDE and target IDE-related windows.

Note: While the automatic import process is in progress, do not touch your mouse or
keyboard. Doing so might disrupt the process. When the process completes, you can
resume normal operations.

You must have already installed your target PLC IDE in a default location, and it must
use the CoDeSys V2.3 IDE. If you installed the target PLC IDE in a nondefault location,
open the Configuration Parameters dialog box. In the PLC Coder node, set the Target
IDE Path parameter to the installation folder of your PLC IDE. See “Target IDE Path”
on page 12-9.

1 If it is not already started, open the Command Window.
2 Open the plcdemo_simple_subsystem model.
3 Right-click the Subsystem block and select PLC Code > Generate and Import

Code for Subsystem.

The software:

a Generates the code.
b Starts the target IDE interface.
c Creates a new project.
d Imports the generated code to the target IDE.

If you want to generate, import, and run the Structured Text code, see “Import and
Verify Structured Text Code” on page 3-4.

Troubleshoot Automatic Import Issues

Following are guidelines, hints, and tips for questions or issues you might have while
using the automatic import capability of the Simulink PLC Coder product.

Supported Target IDEs

The Simulink PLC Coder software supports only the following versions of target IDEs for
automatic import and verification:

1 Getting Started

1-26

• 3S-Smart Software Solutions CoDeSys Version 2.3
• KW-Software MULTIPROG 5.0 (English)
• Phoenix Contact PC WORX 6.0 (English)
• Rockwell Automation RSLogix 5000 Series Version 17, 18, 19 (English)

For the Rockwell Automation RSLogix routine format, you must generate testbench
code for automatic import and verification.

• Siemens SIMATIC STEP 7 Version 5.4 (English and German)

Unsupported Target IDEs

The following target IDEs currently do not support automatic import. For these target
IDEs, the automatic import menu items (Generate and Import Code for Subsystem
and Generate, Import, and Verify Code for Subsystem) are disabled.

• 3S-Smart Software Solutions CoDeSys Version 3.3
• 3S-Smart Software Solutions CoDeSys Version 3.5
• B&R Automation Studio IDE
• Beckhoff TwinCAT 2.11
• Generic
• PLCopen

Possible Automatic Import Issues

When the Simulink PLC Coder software fails to finish automatically importing for the
target IDE, it reports an issue in a message dialog box. To remedy the issue, try the
following actions:

• Check that the coder supports the target IDE version and language setting
combination.

• Check that you have specified the target IDE path in the subsystem Configuration
Parameters dialog box.

• Close currently open projects in the target IDE, close the target IDE completely, and
try again.

• Some target IDEs can have issues supporting the large data sets the coder test bench
generates. In these cases, try to shorten the simulation cycles to reduce the data set
size, then try the automatic import again.

 Import Structured Text Code Automatically

1-27

• Other applications can interfere with automatic importing to a target IDE. Try to
close other unrelated applications on the system and try the automatic import again.

1 Getting Started

1-28

Simulation and Code Generation of Motion Instructions

In this section...

“Workflow for Using Motion Instructions in Model” on page 1-28
“Library of Motion Instructions” on page 1-30
“Data Types for Motion Instructions” on page 1-31
“Limitations for MAM Instruction” on page 1-31

The Simulink PLC Coder software supports a workflow for the behavioral simulation and
code generation of motion instructions for the Rockwell Automation RSLogix 5000 IDE.

Workflow for Using Motion Instructions in Model

This workflow uses plcdemo_motion_control in the plcdemos folder. This example
provides a template that you can use with motion instructions. It contains the following
subsystems.

Subsystem Description

Controller Contains an example Stateflow chart with motion
instructions. The controller subsystem sends input
to the Command Profile subsystem (part of the
template).

Replace this subsystem with your own controller
subsystem.

Command Profile Contains a utility subsystem in which the coder
calculates the position data based on the parameters
of the motion instructions MAM command.

Drive Model Contains a minimalistic drive model.

Replace this subsystem with your own drive model
subsystem.

Drive Status Contains a utility subsystem that reads drive status
and returns that status to the Controller subsystem.

Typically, you do not need to modify or replace this
subsystem.

 Simulation and Code Generation of Motion Instructions

1-29

Before you start, create:

• A custom controller subsystem. This subsystem contains motion instructions. The
controller subsystem sends input to the Command Profile subsystem.

• A custom drive (plant) model subsystem. The subsystem sends input to a Drive Status
subsystem. Design the subsystem to work with the inputs and outputs.

To modify the plcdemo_motion_control example:

1 Open the plcdemo_motion_control example template.
2 In the Controller subsystem, replace the ExampleController chart with your

controller subsystem.
3 In the template, replace the Drive Model subsystem with your drive (plant) model.
4 Simulate the model.
5 Observe the simulation results in the model scopes.

The following plots show the output from plcdemo_motion_control without
modification.

1 Getting Started

1-30

6 Generate code for the example model. To view the code in “Generate a Traceability
Report from Configuration Parameters” on page 4-4, in the coder configuration
parameters, select the PLC Code Generation > Report > Generate traceability
report check box and click Apply.

Navigate to the PLC Code Generation node and click Generate code.

An HTML file of the generated code is displayed.
7 Observe the generated code for MAM, MAFR, and MSO.

MAFR and MSO

MAM

Library of Motion Instructions

The plcdemo_motion_control example uses a motion instructions library that
contains a Motion Stub Functions Stateflow chart. This chart defines stub functions for
only the following motion instructions:

• MAM

• MAFR

• MSO

 Simulation and Code Generation of Motion Instructions

1-31

To use other Rockwell Automation RSLogix motion instructions in the model, you must
define your own stub functions to correspond to the RSLogix motion instructions in the
Motion Stub Functions chart.

Data Types for Motion Instructions

The plcdemo_motion_control example uses Simulink bus data types
(Simulink.Bus). These data types correspond to the motion instruction AXIS and
MOTION_INSTRUCTION user-defined data types (UDTs) in the Rockwell Automation
RSLogix 5000 IDE. For these UDTs, the example defines only the fields used in the
ExampleController chart of the plcdemo_motion_control example. When you
generate code, the coder maps the bus data types to the motion instruction UDTs. If your
controller subsystem uses other fields of motion instruction UDTs, you must add them to
the definition of the corresponding Simulink bus data types. The /toolbox/plccoder/
plccoderdemos/PLCMotionType.mat file contains the definitions of the Simulink bus
data types. You can add more fields to these definitions as required by your controller.
Name Size Bytes Class Attributes

 AXIS_SERVO_DRIVE 1x1 Simulink.Bus

 MOTION_INSTRUCTION 1x1 Simulink.Bus

Limitations for MAM Instruction

In the plcdemo_motion_control example, the MAM instruction has the following
limitations:

• Direction parameter is always forward.
• The software supports only the Trapezoidal profile.
• The software ignores units parameters.
• The software does not support Merge and Merge speed.

2

Mapping Simulink Semantics to
Structured Text

• “Generated Code Structure for Simple Simulink Subsystems” on page 2-2
• “Generated Code Structure for Reusable Subsystems” on page 2-4
• “Generated Code Structure for Triggered Subsystems” on page 2-6
• “Generated Code Structure for Stateflow Charts” on page 2-8
• “Generated Code Structure for MATLAB Function Block” on page 2-13
• “Generated Code Structure for Multirate Models” on page 2-15
• “Generated Code Structure for Subsystem Mask Parameters” on page 2-17
• “Global Tunable Parameter Initialization for PC WORX” on page 2-22

2 Mapping Simulink Semantics to Structured Text

2-2

Generated Code Structure for Simple Simulink Subsystems

This topic assumes that you have generated Structured Text code from a Simulink
model. If you have not yet done so, see “Generate Structured Text from the Model
Window” on page 1-14.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 If you do not have the plcdemo_simple_subsystem.exp file open, open it in the
MATLAB editor. In the folder that contains the file, type:

edit plcdemo_simple_subsystem.exp

A file like the following is displayed.

The following figure illustrates the mapping of the generated code to Structured Text
components for a simple Simulink subsystem. The Simulink subsystem corresponds
to the Structured Text function block, Subsystem.

Note: The coder maps alias data types to the base data type in the generated code.

 Generated Code Structure for Simple Simulink Subsystems

2-3

Input parameter for
subsystem method
type

Subsystem
inputs and
outputs

Subsystem
State (DWork)
variables

Initialize and
step methods

Inlined
parameters

SubsystemAtomic subsystem name

2 Inspect this code as you ordinarily do for PLC code. Check the generated code.

2 Mapping Simulink Semantics to Structured Text

2-4

Generated Code Structure for Reusable Subsystems

This topic assumes that you have generated Structured Text code from a Simulink
model. If you have not yet done so, see “Generate Structured Text from the Model
Window” on page 1-14.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_reusable_subsystem model.
2 Right-click the Subsystem block and select PLC Code > Generate Code for

Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_reusable_subsystem.exp.

3 If you do not have the plcdemo_reusable_subsystem.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured
Text components for a reusable Simulink subsystem . This graphic contains a copy
of the hierarchical subsystem, ReusableSubsystem. This subsystem contains two
identical subsystems, S1 and S2. This configuration enables code reuse between the
two instances (look for the ReusableSubsystem string in the code).

 Generated Code Structure for Reusable Subsystems

2-5

Instance variables

Instance invocations (call sites)

Reused code in
 FUNCTION_BLOCK

4 Examine the generated Structured Text code. The code defines FUNCTION_BLOCK
ReusableSubsystem_S1 once.

Look for two instance variables that correspond to the two instances
declared inside the parent FUNCTION_BLOCK ReusableSubsystem
(_instance_ReusableSubsystem_S1_1: ReusableSubsystem_S1 and
_instance_ReusableSubsystem_S1_0: ReusableSubsystem_S1). The code
invokes these two instances separately by passing in different inputs. The code
invokes the outputs per the Simulink execution semantics.

2 Mapping Simulink Semantics to Structured Text

2-6

Generated Code Structure for Triggered Subsystems

This topic assumes that you have generated Structured Text code from a Simulink
model. If you have not yet done so, see “Generate Structured Text from the Model
Window” on page 1-14.

The example in this topic shows generated code for the CoDeSys Version 2.3 PLC IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_cruise_control model.
2 Right-click the Controller subsystem block and select PLC Code > Generate Code

for Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_cruise_control.exp.

3 If you do not have the plcdemo_cruise_control.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured
Text components for a triggered Simulink subsystem . The first part of the figure
shows the Controller subsystem and the triggered Stateflow chart that it contains.
The second part of the figure shows excerpts of the generated code. Notice the zero-
crossing functions that implement the triggered subsystem semantics.

Subsystem Triggered Stateflow Chart

 Generated Code Structure for Triggered Subsystems

2-7

Generated code

Triggered subsystem semantics

2 Mapping Simulink Semantics to Structured Text

2-8

Generated Code Structure for Stateflow Charts

The examples in this topic show generated code for the CoDeSys Version 2.3 PLC IDE.
Generated code for other IDE platforms looks different.

Stateflow Chart with Event Based Transitions

Generate code for the Stateflow chart ControlModule in the model
plcdemo_stateflow_controller. Here is the chart:

 Generated Code Structure for Stateflow Charts

2-9

You can map the states and transitions in the chart to the generated code. For instance,
the transition from the state Aborting to Aborted appears in the generated code as:

2 Mapping Simulink Semantics to Structured Text

2-10

ControlModule_IN_Aborting:

 (* During 'Aborting': '<S1>:11' *)

 (* Graphical Function 'is_active': '<S1>:73' *)

 (* Transition: '<S1>:75' *)

 IF NOT drive_state.Active THEN

 (* Transition: '<S1>:31' *)

 is_c2_ControlModule := ControlModule_IN_Aborted;

 (* Outport: '<Root>/out' *)

 (* Entry 'Aborted': '<S1>:12' *)

 out := sABORTED;

 (* Graphical Function 'stop_drive': '<S1>:88' *)

 (* Transition: '<S1>:90' *)

 driveOut.Start := FALSE;

 driveOut.Stop := TRUE;

 driveOut.Reset := FALSE;

 END_IF;

For more information on the inlining of functions such as start_drive, stop_drive,
and reset_drive in the generated code, see “Control Code Partitions for MATLAB
Functions in Stateflow Charts” on page 6-9.

Stateflow Chart with Absolute Time Temporal Logic

Generate code for the Stateflow chart Temporal in the model plcdemo_sf_abs_time.
Here is the chart:

 Generated Code Structure for Stateflow Charts

2-11

You can map states and transitions in the chart to the generated code. For instance, the
transition from state B to C appears as:

 Temporal_IN_B:

 (* During 'B': '<S1>:2' *)

 temporalCounter_i1(timerAction := 2, maxTime := 4000);

 IF temporalCounter_i1.done THEN

 (* Transition: '<S1>:8' *)

 is_c2_Temporal := Temporal_IN_C;

 temporalCounter_i1(timerAction := 1, maxTime := 0);

 ELSE

 (* Outport: '<Root>/pulse' *)

 pulse := 2.0;

 END_IF;

2 Mapping Simulink Semantics to Structured Text

2-12

The variable temporalCounter_i1 is an instance of the function block
PLC_CODER_TIMER defined as:

FUNCTION_BLOCK PLC_CODER_TIMER

VAR_INPUT

 timerAction: INT;

 maxTime: DINT;

END_VAR

VAR_OUTPUT

 done: BOOL;

END_VAR

VAR

 plcTimer: TON;

 plcTimerExpired: BOOL;

END_VAR

VAR_TEMP

END_VAR

CASE timerAction OF

 1:

 (* RESET *)

 plcTimer(IN:=FALSE, PT:=T#0s);

 plcTimerExpired := FALSE;

 done := FALSE;

 2:

 (* AFTER *)

 IF (NOT(plcTimerExpired)) THEN

 plcTimer(IN:=TRUE, PT:=DINT_TO_TIME(maxTime));

 END_IF;

 plcTimerExpired := plcTimer.Q;

 done := plcTimerExpired;

 3:

 (* BEFORE *)

 IF (NOT(plcTimerExpired)) THEN

 plcTimer(IN:=TRUE, PT:=DINT_TO_TIME(maxTime));

 END_IF;

 plcTimerExpired := plcTimer.Q;

 done := NOT(plcTimerExpired);

END_CASE;

END_FUNCTION_BLOCK

 Generated Code Structure for MATLAB Function Block

2-13

Generated Code Structure for MATLAB Function Block

This topic assumes that you have generated Structured Text code from a Simulink
model. If you have not yet done so, see “Generate Structured Text from the Model
Window” on page 1-14.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_eml_tankcontrol model.
2 Right-click the TankControl block and select PLC Code > Generate Code for

Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_eml_tankcontrol.exp.

3 If you do not have the plcdemo_eml_tankcontrol.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured
Text components for a Simulink Subsystem block that contains a MATLAB Function
block. The coder tries to perform inline optimization on the generated code for
MATLAB local functions. If the coder determines that it is more efficient to leave the
local function as is, it places the generated code in a Structured Text construct called
FUNCTION.

4 Examine the generated Structured Text code.

2 Mapping Simulink Semantics to Structured Text

2-14

Generated code

for MATLAB

subfunctions

MATLAB code

 Generated Code Structure for Multirate Models

2-15

Generated Code Structure for Multirate Models

This example assumes that you have generated Structured Text code from a Simulink
model. If you have not yet done so, see “Generate Structured Text from the Model
Window” on page 1-14.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_multirate model. This model has two sample rates.
2 Right-click the SimpleSubsystem block and select PLC Code > Generate Code

for Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_multirate.exp.

3 If you do not have the plcdemo_multirate.exp file open, open it in the MATLAB
editor and examine the Structured Text code.

The generated code contains a global time step counter variable:

VAR_GLOBAL

 plc_ts_counter1: DINT;

END_VAR

In this example, there are two rates, and the fast rate is twice as fast as the slow
rate, so the time step counter counts to 1, then resets:

IF plc_ts_counter1 >= 1 THEN

 plc_ts_counter1 := 0;

ELSE

 plc_ts_counter1 := plc_ts_counter1 + 1;

END_IF;

The generated code for blocks running at slower rates executes conditionally based
on the corresponding time step counter values. In this example, the generated
code for Gain1, Unit Delay1, and Sum1 executes every other time step, when
plc_ts_counter1 = 0, because those blocks run at the slow rate. The generated
code for Gain, Unit Delay, Sum, and Sum2 executes every time step because those
blocks run at the fast rate.

SS_STEP:

2 Mapping Simulink Semantics to Structured Text

2-16

 (* Gain: '<S1>/Gain' incorporates:

 * Inport: '<Root>/U1'

 * Sum: '<S1>/Sum'

 * UnitDelay: '<S1>/Unit Delay' *)

 rtb_Gain := (U1 - UnitDelay_DSTATE) * 0.5;

 (* Outport: '<Root>/Y1' *)

 Y1 := rtb_Gain;

 IF plc_ts_counter1 = 0 THEN

 (* UnitDelay: '<S1>/Unit Delay1' *)

 UnitDelay1 := UnitDelay1_DSTATE;

 (* Gain: '<S1>/Gain1' incorporates:

 * Inport: '<Root>/U2'

 * Sum: '<S1>/Sum1' *)

 rtb_Gain1 := (U2 - UnitDelay1) * 0.5;

 (* Outport: '<Root>/Y2' *)

 Y2 := rtb_Gain1;

 END_IF;

 (* Outport: '<Root>/Y3' incorporates:

 * Sum: '<S1>/Sum2'

 * UnitDelay: '<S1>/Unit Delay' *)

 Y3 := UnitDelay_DSTATE - UnitDelay1;

 (* Update for UnitDelay: '<S1>/Unit Delay' *)

 UnitDelay_DSTATE := rtb_Gain;

 IF plc_ts_counter1 = 0 THEN

 (* Update for UnitDelay: '<S1>/Unit Delay1' *)

 UnitDelay1_DSTATE := rtb_Gain1;

 END_IF;

In general, for a subsystem with n different sample times, the generated code has n-1
time step counter variables, corresponding to the n-1 slower rates. Code generated
from parts of the model running at the slower rates executes conditionally, based on the
corresponding time step counter values.

 Generated Code Structure for Subsystem Mask Parameters

2-17

Generated Code Structure for Subsystem Mask Parameters

In the generated code for masked subsystems, the mask parameters map to function
block inputs. The values you specify in the subsystem mask are assigned to these
function block inputs in the generated code.

For example, the following subsystem, Subsystem, contains two instances, Filt1 and
Filt2, of the same masked subsystem.

2 Mapping Simulink Semantics to Structured Text

2-18

The two subsystems, Filt1 and Filt2, have different values assigned to their mask
parameters. In this example, Filt1_Order_Thau is a constant with a value of 5.

 Generated Code Structure for Subsystem Mask Parameters

2-19

2 Mapping Simulink Semantics to Structured Text

2-20

Therefore, for the Filt1 subsystem, the Filt1_Order_Thau parameter has a value of 8,
and for the Filt2 subsystem, the Filt1_Order_Thau parameter has a value of 5.

The following generated code shows the Filt1 function block inputs. The
rtp_Filt1_Order_Thau input was generated for the Filt1_Order_Thau mask
parameter.

FUNCTION_BLOCK Filt1

VAR_INPUT

 ssMethodType: SINT;

 InitV: LREAL;

 InitF: BOOL;

 Input: LREAL;

 rtp_Filt1_Order_Thau: LREAL;

 rtp_InitialValue: LREAL;

 rtp_Filt1_Order_Enable: BOOL;

END_VAR

The following generated code is from the FUNCTION_BLOCK Subsystem. The function
block assigns a value of 8 to the rtp_Filt1_Order_Thau input for the i0_Filt1

 Generated Code Structure for Subsystem Mask Parameters

2-21

instance, and assigns a value of 5 to the rtp_Filt1_Order_Thau input for the
i1_Filt1 instance.

SS_INITIALIZE:

 (* InitializeConditions for Atomic SubSystem: '<S1>/Filt1' *)

 i0_Filt1(ssMethodType := SS_INITIALIZE, InitV := In3,

 InitF := In2, Input := In1,

 rtp_Filt1_Order_Thau := 8.0,

 rtp_InitialValue := 0.0,

 rtp_Filt1_Order_Enable := TRUE);

 Out1 := i0_Filt1.Out;

 (* End of InitializeConditions for SubSystem: '<S1>/Filt1' *)

 (* InitializeConditions for Atomic SubSystem: '<S1>/Filt2' *)

 i1_Filt1(ssMethodType := SS_INITIALIZE, InitV := In6,

 InitF := In5, Input := In4,

 rtp_Filt1_Order_Thau := 5.0,

 rtp_InitialValue := 4.0,

 rtp_Filt1_Order_Enable := TRUE);

 Out2 := i1_Filt1.Out;

 (* End of InitializeConditions for SubSystem: '<S1>/Filt2' *)

SS_STEP:

 (* Outputs for Atomic SubSystem: '<S1>/Filt1' *)

 i0_Filt1(ssMethodType := SS_OUTPUT, InitV := In3, InitF := In2,

 Input := In1, rtp_Filt1_Order_Thau := 8.0,

 rtp_InitialValue := 0.0,

 rtp_Filt1_Order_Enable := TRUE);

 Out1 := i0_Filt1.Out;

 (* End of Outputs for SubSystem: '<S1>/Filt1' *)

 (* Outputs for Atomic SubSystem: '<S1>/Filt2' *)

 i1_Filt1(ssMethodType := SS_OUTPUT, InitV := In6, InitF := In5,

 Input := In4, rtp_Filt1_Order_Thau := 5.0,

 rtp_InitialValue := 4.0,

 rtp_Filt1_Order_Enable := TRUE);

 Out2 := i1_Filt1.Out;

 (* End of Outputs for SubSystem: '<S1>/Filt2' *)

2 Mapping Simulink Semantics to Structured Text

2-22

Global Tunable Parameter Initialization for PC WORX

For PC WORX, the coder generates an initialization function, PLC_INIT_PARAMETERS,
to initialize global tunable parameters that are arrays and structures. This initialization
function is called in the top-level initialization method.

For example, suppose your model has a global array variable, ParArrayXLUT:

ParArrayXLUT=[0,2,6,10];

In the generated code, the PLC_INIT_PARAMETERS function contains the following code
to initialize ParArrayXLUT:

(* parameter initialization function starts *)

ParArrayXLUT[0] := LREAL#0.0;

ParArrayXLUT[1] := LREAL#2.0;

ParArrayXLUT[2] := LREAL#6.0;

ParArrayXLUT[3] := LREAL#10.0;

(* parameter initialization function ends *)
</div></html>

The PLC_INIT_PARAMETERS function is renamed i0_PLC_INIT_PARAMETERS, and
called in the top-level initialization method:

CASE SINT_TO_INT(ssMethodType) OF

 0:

 i0_PLC_INIT_PARAMETERS();

3

Generating Test Bench Code

• “How Test Bench Verification Works” on page 3-2
• “Integrate Generated Code into Custom Code” on page 3-3
• “Import and Verify Structured Text Code” on page 3-4
• “Verify Generated Code with Multiple Test Benches” on page 3-7

3 Generating Test Bench Code

3-2

How Test Bench Verification Works

The Simulink PLC Coder software simulates your model and automatically captures
the input and output signals for the subsystem that contains your algorithm. This set
of input and output signal data is the test bench data. The coder also automatically
generates a test bench, or test harness, using the test bench data.

The test bench runs the generated code to verify that the output is functionally and
numerically equivalent to the output from the execution of a Simulink model. The
following table shows how the test bench compares the expected and actual data values.

Data type Comparison Error tolerance

integer absolute 0
boolean absolute 0
single relative 0.0001
double relative 0.00001

The relative tolerance comparison for single or double data types uses the following logic:

IF ABS(actual_value - expected_value) > (ERROR_TOLERANCE * expected_value) THEN

 testVerify := FALSE;

END_IF;

To verify the generated code using the test bench, import the generated Structured Text
and the test bench data into your target IDE. You can import test bench code:

• Manually, as described in .
• Automatically, including running the test bench, as described in “Import and Verify

Structured Text Code” on page 3-4

Depending on the target IDE platform, the Simulink PLC Coder software generates code
into one or more files. See “Files Generated with Simulink PLC Coder” on page 1-20 for
list of the target IDE platforms and the possible generated files.

 Integrate Generated Code into Custom Code

3-3

Integrate Generated Code into Custom Code

For the top-level subsystem that has internal state, the generated FUNCTION_BLOCK
code has ssMethodType. ssMethodType is a special input argument that the coder adds
to the input variables section of the FUNCTION_BLOCK section during code generation.
ssMethodType enables you to execute code for Simulink Subsystem block methods such
as initialization and computation steps. The generated code executes the associated
CASE statement based on the value passed in for this argument.

To use ssMethodType with a FUNCTION_BLOCK for your model, in the generated code,
the top-level subsystem function block prototype has one of the following formats:

Has Internal State ssMethodType Contains...

Yes The generated function block for the block will have an extra first
parameter ssMethodType of integer type. This extra parameter is in
addition to the function block I/O parameters mapped from Simulink
block I/O ports. To use the function block, first initialize the block by
calling the function block with ssMethodType set to integer constant
SS_INITIALIZE. If the IDE does not support symbolic constants, set
ssMethodType to integer value 0. For each follow-up invocation, call
the function block with ssMethodType set to constant SS_STEP. If
the IDE does not support symbolic constants, set ssMethodType to
integer value 1. These settings cause the function block to initialize
or compute and return output for each time step.

No The function block interface only has parameters mapped from
Simulink block I/O ports. There is no ssMethodType parameter. To
use the function block in this case, call the function block with I/O
arguments.

For non top-level subsystems, in the generated code, the subsystem function block
prototype has one of the following formats:

Has Internal State ssMethodType Contains...

Yes The function block interface has the ssMethodType parameter. The
generated code might have SS_INITIALIZE, SS_OUTPUT, or other
ssMethodType constants to implement Simulink semantics.

No The function block interface only has parameters mapped from
Simulink block I/O ports. There is no ssMethodType parameter.

3 Generating Test Bench Code

3-4

Import and Verify Structured Text Code

After you generate code and test benches for your subsystem, you can import them to
your target IDE. Using the test bench data, you can verify that the results from your
generated code match your simulation results.

If you want to only import the generated code, see “Generate and Automatically Import
Structured Text Code” on page 1-24.

Generate, Import, and Verify Structured Text

If you are working with the KW-Software MULTIPROG 5.0 or Phoenix Contact PC
WORX 6.0 IDE, see “Import and Verify Structured Text to KW-Software MULTIPROG
5.0 and Phoenix Contact PC WORX 6.0 IDEs” on page 3-5.

Otherwise, to generate, import and verify structured text code:

1 Specify that test bench code must be generated for the subsystem.

a Right-click your subsystem and select PLC Code > Options.
b Select “Generate testbench for subsystem” on page 12-12.

If you do not specify that test bench code must be generated, when you automatically
verify the generated code, you see the error Testbench not selected.

2 You can generate the code and testbench, and manually import them to your target
IDE. For information on how to import generated code, see the user manual for your
target IDE.

Alternatively, after code generation, import and verify the generated code
automatically. Right-click the subsystem and select PLC Code > Generate,
Import, and Verify Code for Subsystem. The software:

a Generates the code and test bench.
b Starts the target IDE.
c Creates a new project.
d Imports the generated code and test bench to the new project in the target IDE.
e Runs the generated code on the target IDE to verify it.

 Import and Verify Structured Text Code

3-5

Import and Verify Structured Text to KW-Software MULTIPROG 5.0 and
Phoenix Contact PC WORX 6.0 IDEs

Before you can automatically import generated code to this IDE, create an Empty
template. You must have already set your target IDE to KW-Software MULTIPROG 5.0
or Phoenix Contact PC WORX 6.0.

1 Start the KW-Software MULTIPROG 5.0 or Phoenix Contact PC WORX 6.0 IDE.
2 Select File > Delete Template. Delete any template named Empty, and click OK

when done.
3 Select File > New Project, select Project Wizard, then click OK.

a In the Project Name field, type Empty,
b In the Project Path field, type or select a path to which you have write

privileges.
c Click Next.
d In the remaining wizard pages, click Next to leave the default selections. At the

end of the wizard, click Finish.

The IDE is updated with the new Empty project tree.
4 In the project, delete everything under the following nodes:

• Logical POUs
• Physical Hardware

5 Verify that the project tree has only top-level nodes for Libraries, Data Types,
Logical POUs, and Physical Hardware. There must not be any subtree nodes.

6 In the IDE, select File > Save As Template.
7 In Template Name, type Empty.
8 Click OK.
9 Close the IDE interface.

Open your model, right-click the Subsystem block, and select one of the following:

• PLC Code > Generate and Import Code for Subsystem
• PLC Code > Generate, Import, and Verify Code for Subsystem

If you automatically generate, import, and verify code, the software:

3 Generating Test Bench Code

3-6

1 Generates the code and test bench.
2 Starts the target IDE.
3 Creates a new project.
4 Imports the generated code and test bench to the new project in the target IDE.
5 Runs the generated code on the target IDE to verify it.

 Verify Generated Code with Multiple Test Benches

3-7

Verify Generated Code with Multiple Test Benches

You can generate code with multiple test benches from your subsystem. For the
generated code to have multiple test benches, the input to your subsystem must consist
of multiple signal groups.

To generate multiple test benches for your subsystem:

1 Provide multiple signal groups as inputs by using a Signal Builder block with
multiple signal groups.

Instead of manually entering a Signal Builer block and creating multiple signal
groups, you can use Simulink Design Verifier™ to create a test harness model from
the subsystem. In the test harness model, a Signal Builder block with one or more
signal groups provides input to the subsystem. You can use this Signal Builder block
to provide inputs to your subsystem. However, if your model is complex, Simulink
Design Verifier can create large number of signal groups. See “Troubleshooting: Test
Data Exceeds Target Data Size” on page 3-9.

To create your Signal Builder block with Simulink Design Verifier:

a Right-click the subsystem and select Design Verifier > Generate Tests for
Subsystem.

b In the Simulink Design Verifier Results Summary window, select Create
harness model.

3 Generating Test Bench Code

3-8

c Open the Inputs block in the test harness model. The Inputs block is a Signal
Builder block that can have one or more signal groups.

In the Signal Builder window, make sure that more than one signal group is
available in the Active Group drop-down list.

d Copy the Signal Builder block from the test harness model and use this block to
provide inputs to your original subsystem.

2 Specify that test benches must be generated for the subsystem.

a Right-click your subsystem and select PLC Code > Options.

 Verify Generated Code with Multiple Test Benches

3-9

b Select “Generate testbench for subsystem” on page 12-12.
3 Right-click the subsystem and select PLC Code > Generate, Import and Verify

Code for Subsystem.

In your target IDE, you can see multiple test benches. Each test bench corresponds
to a signal group.

Troubleshooting: Test Data Exceeds Target Data Size

If the test data from the multiple signal groups exceeds the maximum data size on your
target, you can encounter compilation errors. If you encounter compilation errors when
generating multiple test benches, try one of the following:

• Reduce the number of signal groups in the Signal Builder block and regenerate the
test benches.

• Increase the simulation step size for the subsystem.

4

Code Generation Reports

• “Information in Code Generation Reports” on page 4-2
• “Create and Use Code Generation Reports” on page 4-4
• “View Requirements Links from Generated Code” on page 4-16
• “Working with the Static Code Metrics Report” on page 4-17

4 Code Generation Reports

4-2

Information in Code Generation Reports

The coder creates and displays a Traceability Report file when you select one or more of
these options:

GUI Option Command-Line Property Description

Generate
traceability
report

PLC_GenerateReport Specify whether to create code
generation report.

Generate
model Web
view

PLC_GenerateWebview Include the model Web view in
the code generation report to
navigate between the code and
model within the same window.
You can share your model and
generated code outside of the
MATLAB environment.

In the Configuration Parameters dialog box, in the Report panel, you see these options.

Note: You must have a Simulink Report Generator™ license to generate traceability
reports.

The coder provides the traceability report to help you navigate more easily between the
generated code and your source model. When you enable code generation report, the
coder creates and displays an HTML code generation report. You can generate reports
from the Configuration Parameters dialog box or the command line. A typical traceability
report looks something like this figure:

 Information in Code Generation Reports

4-3

4 Code Generation Reports

4-4

Create and Use Code Generation Reports

In this section...

“Generate a Traceability Report from Configuration Parameters” on page 4-4
“Keep the Report Current” on page 4-6
“Trace from Code to Model” on page 4-7
“Trace from Model to Code” on page 4-8
“Model Web View in Code Generation Report” on page 4-10
“Generate a Static Code Metrics Report” on page 4-13
“Generate a Traceability Report from the Command Line” on page 4-14

Generate a Traceability Report from Configuration Parameters

To generate a Simulink PLC Coder code generation report from the Configuration
Parameters dialog box:

1 Verify that the model is open.
2 Open the Configuration Parameters dialog box and navigate to the PLC Code

Generation pane.
3 To enable report generation, select Report > Generate traceability report.
4 Click Apply.

 Create and Use Code Generation Reports

4-5

5 Click PLC Code Generation > Generate code to initiate code and report
generation. The coder generates HTML report files as part of the code generation
process.

The HTML report appears:

4 Code Generation Reports

4-6

For more information, see:

• “Trace from Code to Model” on page 4-7
• “Trace from Model to Code” on page 4-8

Keep the Report Current

If you generate a code generation report for a model, and subsequently make changes to
the model, the report might become invalid. To keep your code generation report current,

 Create and Use Code Generation Reports

4-7

after modifying the source model, regenerate code and the report. If you close and then
reopen a model, regenerate the report.

Trace from Code to Model

You must have already generated code with a traceability report. If not, see “Generate
a Traceability Report from Configuration Parameters” on page 4-4 or “Generate a
Traceability Report from the Command Line” on page 4-14.

To trace generated code to your model:

1 In the generated code HTML report display, look for <S1>/Gain.

S1/Gain

2 In the HTML report window, click a link to highlight the corresponding source
block. For example, in the HTML report shown in the previous figure, you click the

4 Code Generation Reports

4-8

hyperlink for the Gain block (highlighted) to view that block in the model. Clicking
the hyperlink locates and displays the corresponding block in the model editor
window. You can use the same method to trace other block from the HTML report.

Trace from Model to Code

You can select a component at any level of the model with model-to-code traceability. You
can also view the code references to that component in the HTML code generation report.
You can select the following objects for tracing:

• Subsystem
• Simulink block
• MATLAB Function block
• Truth Table block
• State Transition Table block
• Stateflow chart, or the following elements of a Stateflow chart:

• State
• Transition
• Graphical function
• MATLAB function
• Truth table function

You must have already generated code with a traceability report to trace a model
component to the generated code. If not, see “Generate a Traceability Report from
Configuration Parameters” on page 4-4 or “Generate a Traceability Report from the
Command Line” on page 4-14.

 Create and Use Code Generation Reports

4-9

To trace a model component to the generated code:

1 In the model window, right-click the component and select PLC Code > Navigate
to Code.

2 Selecting Navigate to Code activates the HTML code generation report. The
following figure shows the result of tracing the Gain block within the subsystem.

In the report, the highlighted tag S1/Gain indicates the beginning of the generated
code for the block. You can use the same method to trace from other Simulink,
Stateflow and MATLAB objects to the generated traceability report.

4 Code Generation Reports

4-10

Model Web View in Code Generation Report

Model Web Views

To review and analyze the generated code, it is helpful to navigate between the code
and model. You can include a Web view of the model within the HTML code generation
report. You can then share your model and generated code outside of the MATLAB
environment. You need a Simulink Report Generator license to include a Web view of the
model in the code generation report.

Browser Requirements for Web Views

Web views require a Web browser that supports Scalable Vector Graphics (SVG). Web
views use SVG to render and navigate models.

You can use the following Web browsers:

• Mozilla® Firefox® Version 1.5 or later, which has native support for SVG. To download
the Firefox browser, go to www.mozilla.com/.

• Apple Safari Web browser
• The Microsoft® Internet Explorer® Web browser with the Adobe® SVG Viewer plug-in.

To download the Adobe SVG Viewer plug-in, go to www.adobe.com/svg/.

Note: Web views do not currently support Microsoft Internet Explorer 9.

Generate HTML Code Generation Report with Model Web View

This example shows how to create an HTML code generation report which includes a
Web view of the model diagram.

1 Open the plcdemo_simple_subsystem model.
2 Open the Configuration Parameters dialog box and navigate to the Code Generation

pane.
3 To enable report generation, select Report > Create report code generation

report.
4 To enable model web view, select Report > Generate model Web view.
5 Click Apply.

http://www.mozilla.com/
http://www.adobe.com/svg/

 Create and Use Code Generation Reports

4-11

The dialog box looks something like this:

6 Click PLC Code Generation > Generate code to initiate code and report
generation. The code generation report for the top model opens in a MATLAB Web
browser.

4 Code Generation Reports

4-12

7 In the left navigation pane, select a source code file. The corresponding traceable
source code is displayed in the right pane and includes hyperlinks.

8 Click a link in the code. The model Web view displays and highlights the
corresponding block in the model.

9 To go back to the code generation report for the top model, at the top of the left
navigation pane, click the Back button until the top model's report is displayed.

For more information about navigating between the generated code and the model
diagram, see:

• “Trace from Code to Model” on page 4-7

 Create and Use Code Generation Reports

4-13

• “Trace from Model to Code” on page 4-8

Model Web View Limitations

When you are using the model Web view, the HTML code generation report includes the
following limitations :

• Code is not generated for virtual blocks. In the model Web view, if you click a virtual
block, the code generation report clears highlighting in the source code files.

• Stateflow truth tables, events, and links to library charts are not supported in the
model Web view.

• Searching in the code generation report does not find or highlight text in the model
Web view.

• In a subsystem build, the traceability hyperlinks of the root-level inports and outports
blocks are disabled.

• If you navigate from the actual model diagram (not the model Web view in the
report), to the source code in the HTML code generation report, the model Web view
is disabled and not visible. To enable the model Web view, open the report again, see
“Open Code Generation Report”.

Generate a Static Code Metrics Report

The PLC Coder Static Code Metrics report provides statistics of the generated code.
The report is generated when you select Generate Traceability Report in the
Configuration Parameters dialog box. You can use the Static Code Metrics Report
to evaluate the generated PLC code before implementation in your IDE. For more
information, see “Working with the Static Code Metrics Report” on page 4-17.

The procedure is the same as generating the Traceability Report.

1 Open the Configuration Parameters dialog box and navigate to the PLC Code
Generation pane.

2 To enable report generation, select Report > Generate traceability report.
3 Click Apply.
4 Click PLC Code Generation > Generate code to initiate code and report

generation. The coder generates HTML report files as part of the code generation
process. The Code Metrics Report is shown on the left navigation pane.

4 Code Generation Reports

4-14

Generate a Traceability Report from the Command Line

To generate a Simulink PLC Coder code generation report from the command line code
for the subsystem, plcdemo_simple_subsystem/SimpleSubsystem:

1 Open a Simulink PLC Coder model, for example:

open_system('plcdemo_simple_subsystem');

2 Enable the code generation parameter PLC_GenerateReport. To view the output in
the model Web view, also enable PLC_GenerateWebview:
set_param('plcdemo_simple_subsystem', 'PLC_GenerateReport', 'on');

set_param('plcdemo_simple_subsystem', 'PLC_GenerateWebView', 'on');

 Create and Use Code Generation Reports

4-15

3 Generate the code.
generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

A traceability report is displayed. In your model, a View diagnostics hyperlink
appears at the bottom of the model window. Click this hyperlink to open the
Diagnostic Viewer window.

If the model Web view is also enabled, that view is displayed.

4 Code Generation Reports

4-16

View Requirements Links from Generated Code

For requirements reviews, design reviews, traceability analysis, or project
documentation, you can create links to requirements documents from your model
with the Simulink Verification and Validation™ software. If your model has links to
requirements documents, you can also view the links from the generated code.

Note: The requirement links must be associated with a model object. If requirements
links are associated with the code in a MATLAB Function block, they do not appear in
generated code comments.

To view requirements from generated code:

1 From your model, create links to requirements documents.

See “Requirements Traceability”.
2 For the subsystem for which you want to generate code, specify the following

configuration parameters.

Option Purpose

“Include comments” on page 12-14 Model information must appear in code
comments.

“Generate traceability report” on page
12-31

After code is generated, a Code
Generation Report must be produced.

3 Generate code.

The Code Generation Report opens. The links to requirements documents appear in
generated code comments. When you view the code in the Code Generation Report,
you can open the links from the comments.

 Working with the Static Code Metrics Report

4-17

Working with the Static Code Metrics Report

In this section...

“Workflow for Static Code Metrics Report” on page 4-17
“Report Contents” on page 4-18
“Function Block Information” on page 4-19

You can use the information in the Static Code Metrics Report to assess the generated
code and make model changes before code implementation in your target IDE.

Before starting, you should familiarize yourself with potential code limitations of your
IDE. For example, some IDE’s might have limits on the number of variables or lines of
code in a function block.

For detailed instructions on generating the report, see “Generate a Static Code Metrics
Report” on page 4-13.

Workflow for Static Code Metrics Report

This is the basic workflow for using the Static Code Metrics Report with your model.

4 Code Generation Reports

4-18

Report Contents

The Static Code Metrics Report is divided into the following sections:

• File Information: Reports high-level information about generated files, such as lines
and lines of code.

• Global Variables: Reports information about global variables defined in the
generated code.

• Global Constants: Reports information about global constants defined in the
generated code.

 Working with the Static Code Metrics Report

4-19

• Function Block Information: Reports a table of metrics for each function block
generated from your model.

Function Block Information

You can use the information in the Function Block Information table to assess the
generated code prior to implementation in your IDE. The leftmost column of the table
lists function blocks with hyperlinks. Clicking on a function block name will lead you to
the function block location in the generated code. From here, you can trace from the code
to the model. For more information, see “Trace from Code to Model” on page 4-7.

5

Working with Tunable Parameters in
the Simulink PLC Coder Environment

• “Block Parameters in Generated Code” on page 5-2
• “Control Appearance of Block Parameters in Generated Code” on page 5-5

5 Working with Tunable Parameters in the Simulink PLC Coder Environment

5-2

Block Parameters in Generated Code

Block parameters appear in the generated code as variables. You can choose how the
variables appear in the generated code. For instance, you can control the following
variable characteristics:

• Whether the variables are inlined in generated code.
• Whether the variables are local to a function block, global, or not defined.

To control how the block parameters appear in the generated code, you can either define
the parameters as Simulink.Parameter objects in the MATLAB workspace or use
the Model Parameter Configuration dialog box. For more information, see “Control
Appearance of Block Parameters in Generated Code” on page 5-5.

Simulink PLC Coder exports tunable parameters as exported symbols and preserves
the names of these parameters in the generated code. It does not mangle these names.
As a result, if you use a reserved IDE keyword as a tunable parameter name, the code
generation can cause compilation errors in the IDE. As a best practice, do not use IDE
keywords as tunable parameter names.

The coder maps tunable parameters in the generated code as listed in the following table:

Parameter Storage ClassTarget IDE

SimulinkGlobal ExportedGlobal ImportedExtern Imported-

ExternPointer

CoDeSys 2.3 Local function block
variables

Global variable Variable is
not defined in
generated code
and expected to be
defined externally.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

CoDeSys 3.3 Local function block
variables

Global variable Variable is
not defined in
generated code
and expected to be
defined externally.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

CoDeSys 3.5 Local function block
variables

Global variable Variable is
not defined in

Ignored. If you
set the parameter

 Block Parameters in Generated Code

5-3

Parameter Storage ClassTarget IDE

SimulinkGlobal ExportedGlobal ImportedExtern Imported-

ExternPointer

generated code
and expected to be
defined externally.

to this value, the
software treats
it the same as
ImportedExtern.

B&R
Automation
Studio 3.0

Local function block
variable

Local function
block variable

Local function block
variable.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

Beckhoff
TwinCAT 2.11

Local function block
variable

Global variable Variable is
not defined in
generated code
and expected to be
defined externally.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

KW-Software
MULTIPROG
5.0

Local function block
variable

Local function
block variable

Local function block
variable.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

Phoenix
Contact PC
WORX 6.0

Local function block
variable

Global variable Variable is
not defined in
generated code
and expected to be
defined externally.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

RSLogix 5000
17, 18: AOI

AOI local tags AOI input tags AOI input tags. Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

5 Working with Tunable Parameters in the Simulink PLC Coder Environment

5-4

Parameter Storage ClassTarget IDE

SimulinkGlobal ExportedGlobal ImportedExtern Imported-

ExternPointer

RSLogix 5000
17, 18: Routine

Instance fields of
program UDT tags

Program tags Variable is
not defined in
generated code
and expected to be
defined externally.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

Siemens
SIMATIC
STEP 7 5.4

Local function block
variable

Local function
block variable

Local function block
variable.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

Generic Local function block
variable

Global variable Variable is
not defined in
generated code
and expected to be
defined externally.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

PLCopen Local function block
variable

Global variable Variable is
not defined in
generated code
and expected to be
defined externally.

Ignored. If you
set the parameter
to this value, the
software treats
it the same as
ImportedExtern.

 Control Appearance of Block Parameters in Generated Code

5-5

Control Appearance of Block Parameters in Generated Code

Unless you use constants for block parameters in your model, they appear in the
generated code as variables. You can choose how these variables appear in the generated
code. For instance, you can control the following variable characteristics:

• Whether the variables are inlined in generated code.
• Whether the variables are local to a function block, global, or not defined.

For more information, see “Block Parameters in Generated Code” on page 5-2.

To control how the block parameters appear in the generated code:

1 Use variables instead of constants for block parameters.
2 Define these parameters in the MATLAB workspace in one of the following ways:

• Use a MATLAB script to create a Simulink.Parameter object. Run the script
every time that the model loads.

Simulink stores Simulink.Parameter objects outside the model. You can then
share Simulink.Parameter objects between multiple models.

• Use the Model Configuration Parameters dialog box to make the parameters
tunable.

Simulink stores global tunable parameters specified using the Configuration
Parameters dialog box with the model. You cannot share these parameters
between multiple models.

Configure Tunable Parameters with Simulink.Parameter Objects

This example shows how to create and modify a Simulink.Parameter object.

The model plcdemo_tunable_params_slparamobj illustrates these steps. The model
contains a Subsystem block SimpleSubsystem that has three Gain blocks with tunable
parameters, K1, K2, and K3.

1 Write a MATLAB script that defines the tunable parameters.

The following script setup_tunable_params.m creates the constants K1, K2, and
K3 as Simulink.Parameter objects, assigns values, and sets the storage classes for

5 Working with Tunable Parameters in the Simulink PLC Coder Environment

5-6

these constants. For more information on the storage classes, see “Block Parameters
in Generated Code” on page 5-2.

% define tunable parameters in base workspace as

% Simulink.Parameter objects

% tunable parameter mapped to local variable

K1 = Simulink.Parameter;

K1.Value = 0.1;

K1.StorageClass = 'SimulinkGlobal';

% tunable parameter mapped to global variable

K2 = Simulink.Parameter;

K2.Value = 0.2;

K2.StorageClass = 'ExportedGlobal';

K2.CoderInfo.CustomStorageClass = 'Default';

% tunable parameter mapped to global const

K3 = Simulink.Parameter;

K3.Value = 0.3;

K3.StorageClass = 'ExportedGlobal';

K3.CoderInfo.CustomStorageClass = 'Const';

2 Specify that the script setup_tunable_params.m must execute before the model
loads and that the MATLAB workspace must be cleared before the model closes.

a In the model window, select File > Model Properties > Model Properties.
b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn.

Enter setup_tunable_params for Model pre-load function.

 Control Appearance of Block Parameters in Generated Code

5-7

c On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model
close function.

Every time that you open the model, the variables K1, K2, and K3 are loaded into the
base workspace. You can view the variables and their storage classes in the Model
Explorer.

3 Generate code and inspect it.

Variable Storage Class Generated Code (3S CoDeSys 2.3)

K1 SimulinkGlobal K1 is a local function block variable.

FUNCTION_BLOCK SimpleSubsystem

.

.

VAR

 K1: LREAL := 0.1;

5 Working with Tunable Parameters in the Simulink PLC Coder Environment

5-8

Variable Storage Class Generated Code (3S CoDeSys 2.3)
 .

 .

END_VAR

.

.

END_FUNCTION_BLOCK

K2 ExportedGlobal K2 is a global variable.

VAR_GLOBAL

 K2: LREAL := 0.2;

END_VAR

K3 ExportedGlobal and
CoderInfo.CustomStorageClass

set to Const.

K3 is a global constant.

VAR_GLOBAL CONSTANT

 SS_INITIALIZE: SINT := 0;

 K3: LREAL := 0.3;

 SS_STEP: SINT := 1;

END_VAR

Make Parameters Tunable Using Configuration Parameters Dialog Box

This example shows how to make parameters tunable using the Model Configuration
Parameters dialog box.

The model plcdemo_tunable_params illustrates these steps. The model contains
a Subsystem block SimpleSubsystem that has three Gain blocks with tunable
parameters, K1, K2, and K3.

1 Specify that the variables K1, K2, and K3 must be initialized before the model loads
and that the MATLAB workspace must be cleared before the model closes.

a Select File > Model Properties > Model Properties.
b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn.

Enter K1=0.1; K2=0.2; K3=0.3; for Model pre-load function.
c On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model

close function.
2 Select Simulation > Model Configuration Parameters.

 Control Appearance of Block Parameters in Generated Code

5-9

3 Navigate to Optimization > Signals and Parameters. In the Simulation
and code generation section, specify that all parameters must be inlined in the
generated code. Select Inlined for Default Parameter Behavior.

4 To override the inlining and make individual parameters tunable, click Configure.
In the Model Parameter Configuration dialog box, from the Source list, select
Referenced workspace variables.

5 Working with Tunable Parameters in the Simulink PLC Coder Environment

5-10

5 Ctrl+select the parameters and click Add to table >>.

By default, this dialog box sets all parameters to the SimulinkGlobal storage class.
Set the Storage class and Storage type qualifier as shown in this figure. For
more information on the storage classes, see “Block Parameters in Generated Code”
on page 5-2.

 Control Appearance of Block Parameters in Generated Code

5-11

6 Generate code and inspect it.

Variable Storage Class Generated Code (3S CoDeSys 2.3)

K1 SimulinkGlobal K1 is a local function block variable.

FUNCTION_BLOCK SimpleSubsystem

.

.

VAR

 K1: LREAL := 0.1;

 .

5 Working with Tunable Parameters in the Simulink PLC Coder Environment

5-12

Variable Storage Class Generated Code (3S CoDeSys 2.3)
 .

END_VAR

.

.

END_FUNCTION_BLOCK

K2 ExportedGlobal K2 is a global variable.

VAR_GLOBAL

 K2: LREAL := 0.2;

END_VAR

K3 ExportedGlobal and
Storage type qualifier set
to Const.

K3 is a global constant.

VAR_GLOBAL CONSTANT

 SS_INITIALIZE: SINT := 0;

 K3: LREAL := 0.3;

 SS_STEP: SINT := 1;

END_VAR

6

Controlling Generated Code Partitions

• “Generate Global Variables” on page 6-2
• “Control Code Partitions for Subsystem Block” on page 6-3
• “Control Code Partitions for MATLAB Functions in Stateflow Charts” on page

6-9

6 Controlling Generated Code Partitions

6-2

Generate Global Variables

If you want to generate a global variable in your code, use a global Data Store Memory
block based on a Simulink.Signal object in your model. The workflow does not apply to
the Rockwell Automation RSLogix 5000 IDE.

1 Set up a data store in your model by using a Data Store Memory block.
2 Associate a Simulink.Signal object with the data store.

a In the model workspace, define a Simulink.Signal object with the same name
as the data store. Set the storage class of the object to ExportedGlobal or
ImportedExtern.

b In the Data Store Memory block parameters, on the Signal Attributes tab,
select Data store name must resolve to Simulink signal object.

3 In your model, attach the signals that you want to Data Store Read blocks that
read from the data store and Data Store Write blocks that write to the data store.

The Simulink.Signal object that is associated with the global Data Store Memory
block appears as a global variable in generated code.

 Control Code Partitions for Subsystem Block

6-3

Control Code Partitions for Subsystem Block

Simulink PLC Coder converts subsystems to function block units according to the
following rules:

• Generates a function block for the top-level atomic subsystem for which you generate
code.

• Generates a function block for an atomic subsystem whose Function packaging
parameter is set to Nonreusable function or Reusable function.

• Inlines generated code from atomic subsystems, whose Function packaging
parameter is set to Inline, into the function block that corresponds to the nearest
ancestor subsystem. This nearest ancestor cannot be inlined.

These topics use code generated with CoDeSys Version 2.3.

Control Code Partitions Using Subsystem Block Parameters

You can partition generated code using the following Subsystem block parameters on
the Code Generation tab. See the Subsystem block documentation for details.

• Function packaging
• Function name options

Leave the File name options set to the default, Auto.

Generating Separate Partitions and Inlining Subsystem Code

Use the Function packaging parameter to specify the code format to generate for
an atomic (nonvirtual) subsystem. The Simulink PLC Coder software interprets this
parameter depending on the setting that you choose:

Setting Coder Interpretation

Auto Uses the optimal format based on the type
and number of subsystem instances in the
model.

Reusable function, Nonreusable
function

Generates a function with arguments that
allows the subsystem code to be shared by
other instances of it in the model.

Inline Inlines the subsystem unconditionally.

6 Controlling Generated Code Partitions

6-4

For example, in the plcdemo_hierarchical_virtual_subsystem, you can:

• Inline the S1 subsystem code by setting Function packaging to Inline. This
setting creates one function block for the parent with the S1 subsystem inlined.

• Create a function block for the S2 subsystem by setting Function packaging to
Reusable function, Auto, or Nonreusable function. This setting creates two
function blocks, one for the parent, one for S2.

Changing the Name of a Subsystem

You can use the Function name options parameter to change the name of a subsystem
from the one on the block label. When the Simulink PLC Coder generates software, it
uses the string you specify for this parameter as the subsystem name. For example, see
plcdemo_hierarchical_virtual_subsystem:

1 Open the S1 subsystem block parameter dialog box.
2 If the Treat as atomic unit check box is not yet selected, select it.
3 Click the Code Generation tab.
4 Set Function packaging to Nonreusable function.
5 Set Function name options to User specified.
6 In the Function name field, specify a custom name. For example, type

my_own_subsystem.

 Control Code Partitions for Subsystem Block

6-5

7 Save the new settings.
8 Generate code for the parent subsystem.
9 Observe the renamed function block.

One Function Block for Atomic Subsystems

The code for plcdemo_simple_subsystem is an example of generating code with one
function block. The atomic subsystem for which you generate code does not contain other
subsystems.

6 Controlling Generated Code Partitions

6-6

One Function Block for Virtual Subsystems

The plcdemo_hierarchical_virtual_subsystem example contains an atomic
subsystem that has two virtual subsystems, S1 and S2, inlined. A virtual subsystem
does not have the Treat as atomic unit parameter selected. When you generate
code for the hierarchical subsystem, the code contains only the FUNCTION_BLOCK
HierarchicalSubsystem component. There are no additional function blocks for the S1
and S2 subsystems.

 Control Code Partitions for Subsystem Block

6-7

Multiple Function Blocks for Nonvirtual Subsystems

The plcdemo_hierarchical_subsystem example contains an atomic subsystem
that has two nonvirtual subsystems, S1 and S2. Virtual subsystems have the Treat
as atomic unit parameter selected. When you generate code for the hierarchical
subsystem, that code contains the FUNCTION_BLOCK HierarchicalSubsystem,
FUNCTION_BLOCK HierarchicalSubsystem_S1, and FUNCTION_BLOCK
HierarchicalSubsystem_S2 components.

6 Controlling Generated Code Partitions

6-8

Function Block for Hierarchical Subsystem

Function Block for Hierarchical S2

Function Block for Hierarchical S1

 Control Code Partitions for MATLAB Functions in Stateflow Charts

6-9

Control Code Partitions for MATLAB Functions in Stateflow Charts

Simulink PLC Coder inlines MATLAB functions in generated code based on your inlining
specifications. To specify whether to inline a function:

1 Right click the MATLAB function and select Properties.
2 For Function Inline Option, select Inline if you want the function to be inlined.

Select Function if you do not want the function to be inlined. For more information,
see “Specify MATLAB Function Properties in a Chart”.

However, Simulink PLC Coder does not follow your inlining specifications exactly in the
following cases:

• If a MATLAB function accesses data that is local to the chart, it is inlined in
generated code even if you specify that the function must not be inlined.

Explanation: The chart is converted to a function block in generated code. If the
MATLAB function in the chart is converted to a structured text function, it cannot
access the data of an instance of the function block. Therefore, the MATLAB function
cannot be converted to a structured text function in generated code and is inlined.

• If a MATLAB function has multiple outputs and you specify that the function must
not be inlined, it is converted to a function block in generated code.

Explanation: A structured text function cannot have multiple outputs, therefore the
MATLAB function cannot be converted to a structured text function.

The following simple example illustrates the different cases. The model used here has a
Stateflow chart that contains four MATLAB functions fcn1 to fcn4.

Here is the model.

6 Controlling Generated Code Partitions

6-10

Here is the Stateflow chart.

 Control Code Partitions for MATLAB Functions in Stateflow Charts

6-11

6 Controlling Generated Code Partitions

6-12

The functions fcn1 to fcn4 are defined as follows.

Function Inlining Specification Generated Code

fcn1:

function y = fcn1(u)

y = u+1;

Specify that the
function must be
inlined.

fcn1 is inlined in the generated
code.

is_c3_Chart := Chart_IN_A;

(* Outport: '<Root>/y1'

 incorporates:

 * Inport: '<Root>/u1' *)

(* Entry 'A': '<S1>:10' *)

(* MATLAB Function 'fcn1':

 '<S1>:1' *)

(* '<S1>:1:3' *)

y1 := u1 + 1.0;

fcn2:

function y = fcn2(u)

y = u+2;

Specify that the
function must not be
inlined.

fcn2 is not inlined in the generated
code.

is_c3_Chart := Chart_IN_B;

(* Outport: '<Root>/y2'

 incorporates:

 * Inport: '<Root>/u2' *)

(* Entry 'B': '<S1>:11' *)

 y2 := fcn2(u := u2);

.

.

.

FUNCTION fcn2: LREAL

VAR_INPUT

 u: LREAL;

END_VAR

VAR_TEMP

END_VAR

(* MATLAB Function 'fcn2':

 '<S1>:4' *)

(* '<S1>:4:3' *)

fcn2 := u + 2.0;

END_FUNCTION

fcn3:

function y = fcn3(u)

% The function accesses

% local data x of

Specify that the
function must not be
inlined.

fcn3 is inlined in the generated
code because it accesses local data
from the Stateflow chart.

is_c3_Chart := Chart_IN_C;

 Control Code Partitions for MATLAB Functions in Stateflow Charts

6-13

Function Inlining Specification Generated Code
% parent chart

y = u+3+x;

(* Outport: '<Root>/y3'

 incorporates:

 * Inport: '<Root>/u3' *)

(* Entry 'C': '<S1>:15' *)

(* MATLAB Function 'fcn3':

 '<S1>:9' *)

(* The function accesses

 local data x of parent

 chart *)

(* '<S1>:9:4' *)

y3 := (u3 + 3.0) + x;

6 Controlling Generated Code Partitions

6-14

Function Inlining Specification Generated Code

fcn4:

function [yy1,yy2] =

 fcn4(u)

yy1 = u+4;

yy2 = u+5;

Specify that the
function must not be
inlined.

fcn4 is converted to a function
block in the generated code because
it has multiple outputs.

is_c3_Chart := Chart_IN_D;

(* Entry 'D': '<S1>:28' *)

i0_fcn4(u := u4);

b_y4 := i0_fcn4.yy1;

b_y5 := i0_fcn4.yy2;

(* Outport: '<Root>/y4'

 incorporates:

 * Inport: '<Root>/u4' *)

y4 := b_y4;

(* Outport: '<Root>/y5' *)

y5 := b_y5;

.

.

.

FUNCTION_BLOCK fcn4

VAR_INPUT

 u: LREAL;

END_VAR

VAR_OUTPUT

 yy1: LREAL;

 yy2: LREAL;

END_VAR

VAR

END_VAR

VAR_TEMP

END_VAR

(* MATLAB Function 'fcn4':

 '<S1>:26' *)

(* '<S1>:26:3' *)

yy1 := u + 4.0;

(* '<S1>:26:4' *)

yy2 := u + 5.0;

END_FUNCTION_BLOCK

7

Integrating Externally Defined
Symbols

• “Integrate Externally Defined Symbols” on page 7-2
• “Integrate Custom Function Block in Generated Code” on page 7-3

7 Integrating Externally Defined Symbols

7-2

Integrate Externally Defined Symbols

The coder allows you to suppress symbol definitions in the generated code. This
suppression allows you to integrate a custom element, such as user defined function
blocks, function blocks, data types, and named global variable and constants, in place of
one generated from a Simulink subsystem. You must then provide these definitions when
importing the code into the target IDE. You must:

• Define the custom element in the subsystem for which you want to generate code.
• Name the custom element.
• In the Configuration Parameters dialog box, add the name of the custom element

to PLC Code Generation > Symbols > Externally Defined Symbols in the
Configuration Parameters dialog box.

• Generate code.

For a description of how to integrate a custom function block, see “Integrate Custom
Function Block in Generated Code” on page 7-3. For a description of the Externally
Defined Symbols parameter, see “Externally Defined Symbols” on page 12-28.

 Integrate Custom Function Block in Generated Code

7-3

Integrate Custom Function Block in Generated Code

To integrate a custom function block, ExternallyDefinedBlock, this procedure uses the
example plcdemo_external_symbols.

1 In a Simulink model, add a MATLAB Function block.
2 Double-click the MATLAB Function block.
3 In the MATLAB editor, minimally define inputs, outputs, and stubs. For example:

function Y = fcn(U,V)

% Stub behavior for simulation. This block

% is replaced during code generation

Y = U + V;

4 Change the MATLAB Function block name to ExternallyDefinedBlock.
5 Create a subsystem from this MATLAB Function block.
6 Complete the model to look like plcdemo_external_symbols.

7 Integrating Externally Defined Symbols

7-4

7 Open the Configuration Parameters dialog box for the model.
8 Add ExternallyDefinedBlock to PLC Code Generation > Symbols >

Externally Defined Symbols.
9 The plcdemo_external_symbols model also suppresses K1 and InBus. Add these

symbol names to the Externally Defined Symbols field, separated by spaces or
commas. For other settings, see the plcdemo_external_symbols model.

 Integrate Custom Function Block in Generated Code

7-5

10 Save and close your new model. For example, save it as
plcdemo_external_symbols_mine.

11 Generate code for the model.
12 In the generated code, look for instances of ExternallyDefinedBlock.

The reference of ExternallyDefinedBlock is:

The omission of ExternallyDefinedBlock is:

8

IDE-Specific Considerations

• “Integrate Generated Code with Existing Projects in Siemens IDEs” on page 8-2
• “Use Internal Signals for Debugging in RSLogix 5000 IDE” on page 8-4
• “Rockwell Automation RSLogix Considerations” on page 8-6
• “Considerations for Siemens IDEs” on page 8-8

8 IDE-Specific Considerations

8-2

Integrate Generated Code with Existing Projects in Siemens IDEs
You can integrate generated code with an existing Siemens SIMATIC STEP 7 or Siemens
TIA Portal project. For more information on:

• How to generate code, see “Generate and Examine Structured Text Code” on page
1-14.

• The location of generated code, see “Files Generated with Simulink PLC Coder” on
page 1-20.

Integrate Generated Code with Siemens SIMATIC STEP 7 Projects

1 In the Siemens SIMATIC STEP 7 project, right-click the Sources node and select
Insert New Object > External Source.

2 Navigate to the folder containing the generated code and open the file.

Unless you assigned a custom name, the file is called model_name.scl. After you
open the file, a new entry called model_name.scl appears under the Sources node.

3 Double-click the new entry. The generated code is listed in the SCL editor window.
4 In the SCL editor window, select Options > Customize.
5 In the customize window, select Create block numbers automatically and click

OK.

Symbol addresses are automatically generated for Subsystem blocks.
6 In the SCL editor window, compile the model_name.scl file for the Subsystem

block.

The new Function Block is now integrated and available for use with the existing
Siemens SIMATIC STEP 7 project.

Integrate Generated Code with Siemens TIA Portal Projects

1 In the Project tree pane, on the Devices tab, under the External source files
node in your project, select Add new external file.

2 Navigate to the folder containing the generated code and open the file.

Unless you assigned a custom name, the file is called model_name.scl. After you
open the file, a new entry called model_name.scl appears under the External
source files node.

 Integrate Generated Code with Existing Projects in Siemens IDEs

8-3

3 Right-click the new entry and select Generate blocks from source.

The Siemens TIA Portal IDE compiles the new file and generates TIA Portal
program blocks from the code. The program blocks appear under the Program
blocks node. They are available for use with the existing Siemens TIA Portal
project.

8 IDE-Specific Considerations

8-4

Use Internal Signals for Debugging in RSLogix 5000 IDE

For debugging, you can generate code for test point outputs from the top level subsystem
of your model. The coder generates code that maps the test pointed output to optional
AOI output parameters for RSLogix 5000 IDEs. In the generated code, the variable
tags that correspond to the test points have the property Required=false. This
example assumes that you have a model appropriately configured for the coder, such as
plcdemo_simple_subsystem.

1 Open the plcdemo_simple_subsystem model.

plcdemo_simple_subsystem

2 In the Configuration Parameters dialog box, set Target IDE to Rockwell RSLogix
5000: AOI.

3 In the top level subsystem of the model, right-click the output signal of
SimpleSubsystem and select Properties.

The Signal Properties dialog box is displayed.
4 On the Logging and accessibility tab, click the Test point check box.

 Use Internal Signals for Debugging in RSLogix 5000 IDE

8-5

5 Click OK.
6 Generate code for the top level subsystem.
7 Inspect the generated code for the string Required=false.

For more information on signals with test points, see “What Is a Test Point?”.

8 IDE-Specific Considerations

8-6

Rockwell Automation RSLogix Considerations

Following are considerations for this target IDE platform.

Add-On Instruction and Function Blocks

The Structured Text concept of function block exists for Rockwell Automation RSLogix
target IDEs as an Add-On instruction (AOI). The Simulink PLC Coder software
generates AOIs for Add-On instruction format, not FUNCTION_BLOCK.

Double-Precision Data Types

The Rockwell Automation RSLogix target IDE does not support double-precision data
types. At code generation, the Simulink PLC Coder converts this data type to single-
precision data types in generated code.

Design your model to use single-precision data type (single) as much as possible instead
of double-precision data type (double). If you must use doubles in your model, the
numerical results produced by the generated Structured Text can differ from Simulink
results. This difference is due to double-single conversion in the generated code.

Unsigned Integer Data Types

The Rockwell Automation RSLogix target IDE does not support unsigned integer data
types. At code generation, the Simulink PLC Coder converts this data type to signed
integer data types in generated code.

Design your model to use signed integer data types (int8, int16, int32) as much as
possible instead of unsigned integer data types (uint8, uint16, uint32). Doing so avoids
overflow issues that unsigned-to-signed integer conversions can cause in the generated
code.

Unsigned Fixed-Point Data Types

In the generated code, Simulink PLC Coder converts fixed-point data types to target
IDE integer data types. Because the Rockwell Automation RSLogix target IDE does not
support unsigned integer data types, do not use unsigned fixed-point data types in the
model. For more information about coder limitations for fixed-point data type support,
see “Fixed-Point Data Type Limitations” on page 10-2.

 Rockwell Automation RSLogix Considerations

8-7

Enumerated Data Types

The Rockwell Automation RSLogix target IDE does not support enumerated data types.
At code generation, the Simulink PLC Coder converts this data type to 32–bit signed
integer data type in generated code.

8 IDE-Specific Considerations

8-8

Considerations for Siemens IDEs

Following are considerations for this target IDE platform.

Double-Precision Floating-Point Data Types

The Siemens SIMATIC STEP 7 target IDE does not support double-precision floating-
point data types. At code generation, the Simulink PLC Coder converts this data type
to single-precision real data types in the generated code. Design your model so that the
possible precision loss of numerical results of the generated code does not change the
expected semantics of the model.

For Siemens PLC devices that support double-precision floating point types, use
Siemens TIA Portal: Double Precision as Target IDE for generating code.
The generated code uses the LREAL type for double-precision floating point types in the
model. For more information, see “Target IDE” on page 12-4.

int8 and Unsigned Integer Types

The SCL language for Siemens IDEs does not support int8 and unsigned integer data
types. At code generation, the Simulink PLC Coder converts int8 and unsigned integer
data types to int16 or int32 in the generated code.

Design your model to use int16 and int32 data types as much as possible instead of int8
or unsigned integer data types. The Simulink numerical results using int8 or unsigned
integer data types can differ from the numerical results produced by the generated
Structured Text.

Design your model so that effects of integer data type conversion of the generated code do
not change the expected semantics of the model.

Unsigned Fixed-Point Data Types

In the generated code, Simulink PLC Coder converts fixed-point data types to target
IDE integer data types. Because the Siemens target IDEs do not support unsigned
integer data types, do not use unsigned fixed-point data types in the model. For more
information about coder limitations for fixed-point data type support, see “Fixed-Point
Data Type Limitations” on page 10-2.

 Considerations for Siemens IDEs

8-9

Enumerated Data Types

The Siemens SIMATIC STEP 7 target IDE does not support enumerated data types. The
Siemens SIMATIC STEP 7 converts this data type to 16–bit signed integer data type in
the generated code.

9

Supported Simulink and Stateflow
Blocks

9 Supported Simulink and Stateflow Blocks

9-2

Supported Blocks

For Simulink semantics not supported by Simulink PLC Coder, see “Coder Limitations”
on page 10-2.

In this section...

“View Supported Blocks Library” on page 9-2
“Supported Simulink Blocks” on page 9-3
“Supported Stateflow Blocks” on page 9-11
“Blocks With Restricted Support” on page 9-12

View Supported Blocks Library

To view a Simulink library of blocks that the Simulink PLC Coder software supports,
type plclib in the Command Window. The coder can generate Structured Text code for
subsystems that contain these blocks. The library window is displayed.

 Supported Blocks

9-3

This library contains two sublibraries, Simulink and Stateflow. Each sublibrary contains
the blocks that you can include in a Simulink PLC Coder model.

Supported Simulink Blocks

The coder supports the following Simulink blocks.

Additional Math & Discrete/Additional Discrete

Transfer Fcn Direct Form II

Transfer Fcn Direct Form II Time Varying

Unit Delay Enabled

9 Supported Simulink and Stateflow Blocks

9-4

Unit Delay Enabled External IC

Unit Delay Enabled Resettable

Unit Delay Enabled Resettable External IC

Unit Delay External IC

Unit Delay Resettable

Unit Delay Resettable External IC

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled Resettable

Unit Delay With Preview Enabled Resettable External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable External RV

Commonly Used Blocks

Inport

Bus Creator

Bus Selector

Constant

Data Type Conversion

Demux

Discrete-Time Integrator

Gain

Ground

Logical Operator

 Supported Blocks

9-5

Mux

Product

Relational Operator

Saturation

Scope

Subsystem

Inport

Outport

Sum

Switch

Terminator

Unit Delay

Discontinuities

Coulomb and Viscous Friction

Dead Zone Dynamic

Rate Limiter

Rate Limiter Dynamic

Relay

Saturation

Saturation Dynamic

Wrap To Zero

Discrete

Difference

9 Supported Simulink and Stateflow Blocks

9-6

Discrete Transfer Fcn

Discrete Derivative

Discrete FIR Filter

Discrete Filter

PID Controller

PID Controller (2 DOF)

Discrete State-Space

Discrete-Time Integrator

Integer Delay

Memory

Tapped Delay

Transfer Fcn First Order

Transfer Fcn Lead or Lag

Transfer Fcn Real Zero

Unit Delay

Zero-Order Hold

Logic and Bit Operations

Bit Clear

Bit Set

Bitwise Operator

Compare To Constant

Compare To Zero

 Supported Blocks

9-7

Detect Change

Detect Decrease

Detect Increase

Detect Fall Negative

Detect Fall Nonpositive

Detect Rise Nonnegative

Detect Rise Positive

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Shift Arithmetic

Lookup Tables

Dynamic-Lookup

Interpolation Using Prelookup

PreLookup

n-D Lookup Table

Math Operations

Abs

Add

Assignment

Bias

9 Supported Simulink and Stateflow Blocks

9-8

Divide

Dot Product

Gain

Math Function

Matrix Concatenate

MinMax

MinMax Running Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Reciprocal Sqrt

Reshape

Rounding Function

Sign

Slider Gain

Sqrt

Squeeze

Subtract

Sum

Sum of Elements

Trigonometric Function

 Supported Blocks

9-9

Unary Minus

Vector Concatenate

Model Verification

Assertion

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Range

Check Static Gap

Check Static Range

Check Dynamic Lower Bound

Check Dynamic Upper Bound

Check Input Resolution

Check Static Lower Bound

Check Static Upper Bound

Model-Wide Utilities

DocBlock

Model Info

Ports & Subsystems

Atomic Subsystem

CodeReuse Subsystem

Enabled Subsystem

Enable

9 Supported Simulink and Stateflow Blocks

9-10

Function-Call Subsystem

Subsystem

Inport

Outport

Signal Attributes

Data Type Conversion

Data Type Duplicate

Signal Conversion

Signal Routing

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Demux

From

Goto

Goto Tag Visibility

Index Vector

Multiport Switch

Mux

Selector

Sinks

Display

 Supported Blocks

9-11

Floating Scope

Scope

Stop Simulation

Terminator

To File

To Workspace

XY Graph

Sources

Constant

Counter Free-Running

Counter Limited

Enumerated Constant

Ground

Pulse Generator

Repeating Sequence Interpolated

Repeating Sequence Stair

User-Defined Functions

MATLAB Function

Fcn

Supported Stateflow Blocks

The coder supports the following Stateflow blocks.

9 Supported Simulink and Stateflow Blocks

9-12

Stateflow

Chart

State Transition Table

Truth Table

Blocks With Restricted Support

Simulink Block Support Exceptions

The Simulink PLC Coder software supports the plclib blocks with the following
exceptions. Also, see “Coder Limitations” on page 10-2 for a list of limitations of the
software.

If you get unsupported fixed-point type messages during code generation, update
the block parameter. Open the block parameter dialog box. Navigate to the Signal
Attributes and Parameter Attributes tabs. Check that the Output data type and
Parameter data type parameters are not Inherit: Inherit via internal rule.
Set these parameters to either Inherit: Same as input or a desired non-fixed-point
data type, such as double or int8.

Stateflow Chart Exceptions

If you receive a message about consistency between the original subsystem and the S-
function generated from the subsystem build, and the model contains a Stateflow chart
that contains one or more Simulink functions, use the following procedure to address the
issue:

1 Open the model and double-click the Stateflow chart that causes the issue.

The chart Stateflow Editor dialog box is displayed.
2 Right-click in this dialog box.
3 In the context-sensitive menu, select Properties.

The Chart dialog box is displayed.
4 In the Chart dialog box, navigate to the States When Enabling parameter and

select Held.
5 Click Apply and OK and save the model.

 Supported Blocks

9-13

Data Store Memory Block

To generate PLC code for a model that uses a Data Store Memory block, first define
a Simulink.Signal object in the base workspace. Then, in the Signal Attributes tab
of the block parameters, set the data store name to resolve to that Simulink.Signal
object.

For more information, see “Data Stores with Data Store Memory Blocks”.

Reciprocal Sqrt Block

The Simulink PLC Coder software does not support the Simulink Reciprocal Sqrt
block signedSqrt and rSqrt functions.

Lookup Table Blocks

Simulink PLC Coder has limited support for lookup table blocks. The coder does not
support:

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode
• Cubic spline extrapolation method

Note: The Simulink PLC Coder software does not support the Simulink Lookup Table
Dynamic block. For your convenience, the plclib/Simulink/Lookup Tables library
contains an implementation of a dynamic table lookup block using the Prelookup and
Interpolation Using Prelookup blocks.

10

Limitations

10 Limitations

10-2

Coder Limitations

In this section...

“Current Limitations” on page 10-2
“Fixed-Point Data Type Limitations” on page 10-2
“Multirate Model Limitations” on page 10-4
“Permanent Limitations” on page 10-5

Current Limitations

The Simulink PLC Coder software does not support the following Simulink semantics:

• Complex data types
• Model reference
• Absolute time temporal logic in Stateflow charts.
• Stateflow machine-parented data and events
• Limited support for math functions. For instance, the coder does not support the rand

function.
• Merge block
• Signal and state storage classes
• Virtual buses at the input ports of the top-level Atomic Subsystem block
• For Each Subsystem block
• Variable-size signals
• Nonfinite data, for example NaN or Inf
• Objects defined in the Simulink data dictionary, including model parameters, signals

and state objects.

Fixed-Point Data Type Limitations

Simulink PLC Coder software supports the fixed-point data type. To generate code for
fixed-point data types, configure block and model parameters as described in this topic.

Note: If you do not configure the blocks and models as directed, the generated Structured
Text might:

 Coder Limitations

10-3

• Not compile.
• Compile, but return results that differ from the simulation results.

Block Parameters

Properly configure block parameters:

1 If the block in the subsystem has a Signal Attributes tab, navigate to that tab.
2 For the Integer rounding mode parameter, select Round.
3 Clear the Saturate on integer overflow check box.
4 For the Output data type parameter, select a fixed-point data type.
5 Click the Data Type Assistant button.
6 For the Word length parameter, enter 8, 16, or 32.
7 For the Mode parameter, select Fixed point.
8 For the Scaling parameter, select Binary point.

9 Click OK.

Be sure to edit the model configuration parameters (see “Model Configuration
Parameters” on page 10-4).

10 Limitations

10-4

Model Configuration Parameters

Properly configure model configuration parameters:

1 In model Configuration Parameters dialog box, click the Hardware
Implementation node.

2 For the Device vendor parameter, select Generic.
3 For the Device type, select Custom.
4 For the Signed integer division rounds to, select Zero.
5 For the Number of bits, set char to 16.

Multirate Model Limitations

To generate Structured Text from a multirate model, you must configure the model as
follows:

• Change any continuous time input signals in the top-level subsystem to use discrete
fixed sample times.

• For the solver, select single-tasking execution.

The following target IDEs are not supported for multirate model code generation:

• Rockwell Automation RSLogix 5000 AOI

 Coder Limitations

10-5

• Siemens SIMATIC STEP 7
• B&R Automation Studio

When you deploy code generated from a multirate model, you must run the code at the
fundamental sample rate.

Permanent Limitations

The Structured Text language has inherent restrictions. As a result, the Simulink PLC
Coder software has the following restrictions:

• The Simulink PLC Coder software supports code generation only for atomic
subsystems.

• The Simulink PLC Coder software supports automatic, inline, or reusable function
packaging for code generation. Nonreusable function packaging is not supported.

• No blocks that require continuous time semantics. This restriction includes
continuous integrators, zero-crossing blocks, physical modeling blocks, and so on.

• No pointer data types.
• No recursion (including recursive events).

11

Functions — Alphabetical List

11 Functions — Alphabetical List

11-2

plccoderdemos
Product examples

Syntax

plccoderdemos

Description

plccoderdemos displays the Simulink PLC Coder examples.

Examples

Display Simulink PLC Coder examples.
plccoderdemos

See Also
plcopenconfigset

Introduced in R2010a

 plccoderpref

11-3

plccoderpref
Manage user preferences

Syntax
plccoderpref

plccoderpref('plctargetide')

plccoderpref('plctargetide', preference_value)

plccoderpref('plctargetide', 'default')

plccoderpref('plctargetidepaths')

plccoderpref('plctargetidepaths','default')

plccoderpref('plctargetlist')

plccoderpref('plctargetlist',targetlist)

Description
plccoderpref displays the current set of user preferences, including the default target
IDE.

plccoderpref('plctargetide') returns the current default target IDE. This
default can be the target IDE set previously, or the factory default. The factory default is
'codesys23'.

plccoderpref('plctargetide', preference_value) sets the default target
IDE to the one that you specify in preference_value. This command sets the
preference_value to persist as the default target IDE for future MATLAB sessions.

plccoderpref('plctargetide', 'default') sets the default target IDE to the
factory default target IDE ('codesys23').

plccoderpref('plctargetidepaths') returns a 1-by-1 structure of the installation
paths of supported target IDEs.

plccoderpref('plctargetidepaths','default') sets the contents of the 1-by-1
structure of the installation paths to the default values.

plccoderpref('plctargetlist') displays the target IDEs that appear in the
reduced Target IDE list in the Simulink Configuration Parameters dialog box. For

11 Functions — Alphabetical List

11-4

more information, see “Target IDE” on page 12-4 and “Show full target list” on page
12-7.

plccoderpref('plctargetlist',targetlist) sets the target IDEs that appear in
the reduced Target IDE list to the values that you specify in targetlist.

Input Arguments

plctargetide

String directive that specifies the default target IDE.

Value Description

codesys23 3S-Smart Software Solutions CoDeSys Version
2.3 (default) target IDE

codesys33 3S-Smart Software Solutions CoDeSys Version
3.3 target IDE

codesys35 3S-Smart Software Solutions CoDeSys Version
3.5 target IDE

brautomation30 B&R Automation Studio 3.0 target IDE
generic Generic target IDE
multiprog50 KW-Software MULTIPROG 5.0 target IDE
omron OMRON Sysmac Studio
plcopen PLCopen XML target IDE
pcworx60 Phoenix Contact PC WORX 6.0
rslogix5000 Rockwell Automation RSLogix 5000 Series target

IDE for AOI format
rslogix5000_routine Rockwell Automation RSLogix 5000 Series target

IDE for routine format
step7 Siemens SIMATIC STEP 7 Version 5 target IDE
twincat211 Beckhoff TwinCAT 2.11 target IDE
tiaportal Siemens TIA Portal
tiaportal_double Siemens TIA Portal with support for double

precision (LREAL type)

 plccoderpref

11-5

Default: codesys23

plctargetidepaths

String that specifies the target IDE installation path. Contains a 1-by-1 structure of the
installation paths of supported target IDEs.
codesys23: 'C:\Program Files\3S Software'

codesys33: 'C:\Program Files\3S CoDeSys'

codesys35: 'C:\Program Files\3S CoDeSys'

rslogix5000: 'C:\Program Files\Rockwell Software'

rslogix5000_routine: 'C:\Program Files\Rockwell Software'

brautomation30: 'C:\Program Files\BrAutomation'

multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'

pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'

step7: 'C:\Program Files\Siemens'

plcopen: ''

twincat211: 'C:\TwinCAT'

generic: ''

default

String that sets your preferences to the factory default.

plctargetlist

Cell array of strings. Each string specifies a target IDE. You can specify any target IDE
that is available for the plctargetide argument.

Use the string default to reset the reduced Target IDE list.

Examples

Return the current default target IDE.
plccoderpref('plctargetide')

Set rslogix5000 as the new default target IDE.
plccoderpref('plctargetide', 'rslogix5000')

Assume that you have previously changed the installation path of the CoDeSys 2.3 target
IDE. Return the current target IDE installation paths.
 codesys23: 'C:\Program Files2\3S-Software\CoDeSys\v2.3

 codesys33: 'C:\Program Files\3S CoDeSys'

 codesys35: 'C:\Program Files\3S CoDeSys'

11 Functions — Alphabetical List

11-6

 rslogix5000: 'C:\Program Files\Rockwell Software'

rslogix5000_routine: 'C:\Program Files\Rockwell Software'

 brautomation30: 'C:\Program Files\BrAutomation'

 multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'

 pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'

 step7: 'C:\Program Files\Siemens'

 plcopen: ''

 twincat211: 'C:\TwinCAT'

 generic: ''

Set the installation path of all target IDEs, including CoDeSys 2.3, to factory default.
plccoderpref('plctargetidepaths','default')

ans =

 codesys23: 'C:\Program Files\3S Software'

 codesys33: 'C:\Program Files\3S CoDeSys'

 codesys35: 'C:\Program Files\3S CoDeSys'

 rslogix5000: 'C:\Program Files\Rockwell Software'

rslogix5000_routine: 'C:\Program Files\Rockwell Software'

 brautomation30: 'C:\Program Files\BrAutomation'

 multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'

 pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'

 step7: 'C:\Program Files\Siemens'

 plcopen: ''

 twincat211: 'C:\TwinCAT'

 generic: ''

Set the reduced Target IDE list to contain only the IDEs CoDeSys 2.3 and Rockwell
Automation RSLogix 5000 Series for AOI format.
targetlist = {'codesys23','rslogix5000'};

plccoderpref('plctargetlist',targetlist)

ans =

 'codesys23' 'rslogix5000'

Reset the reduced Target IDE list to the default subset.
plccoderpref('plctargetlist','default')

ans =

 'codesys23' 'rslogix5000' 'step7' 'omron' 'plcopen'

Append the IDE CoDeSys 3.5 to the default reduced Target IDE list.
plccoderpref('plctargetlist', [plccoderpref('plctargetlist', 'default') 'codesys35'])

 plccoderpref

11-7

ans =

 'codesys23' 'rslogix5000' 'step7' 'omron' 'plcopen' 'codesys35'

Append the IDE CoDeSys 3.5 to the current reduced Target IDE list.
plccoderpref('plctargetlist', [plccoderpref('plctargetlist') 'codesys35'])

More About

Tips

Use the Simulink Configuration Parameters dialog box to change the installation path of
a target IDE (Target IDE Path).

Introduced in R2010a

11 Functions — Alphabetical List

11-8

plcgeneratecode
Generate Structured Text for subsystem

Syntax

generatedfiles = plcgeneratecode(subsystem)

Description

generatedfiles = plcgeneratecode(subsystem) generates Structured Text for
the specified atomic subsystem in a model. subsystem is the fully qualified path name of
the atomic subsystem. generatedfiles is a cell array of the generated file names. You
must first load or start the model.

Examples

Generate code for the subsystem, plcdemo_simple_subsystem/SimpleSubsystem.
plcdemo_simple_subsystem

generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

See Also
plcopenconfigset

Introduced in R2010a

 plcopenconfigset

11-9

plcopenconfigset
Open Configuration Parameters dialog box for subsystem

Syntax

plcopenconfigset(subsystem)

Description

plcopenconfigset(subsystem) opens the Configuration Parameters dialog box for
the specified atomic subsystem in the model. subsystem is the fully qualified path name
of the atomic subsystem.

Examples

Open the Configuration Parameters dialog box for the subsystem,
plcdemo_simple_subsystem/SimpleSubsystem.
plcdemo_simple_subsystem

plcopenconfigset('plcdemo_simple_subsystem/SimpleSubsystem')

See Also
plcgeneratecode

Introduced in R2010a

12

Configuration Parameters for
Simulink PLC Coder Models

• “PLC Coder: General” on page 12-2
• “PLC Coder: Comments” on page 12-13
• “PLC Coder: Optimization” on page 12-18
• “PLC Coder: Symbols” on page 12-23
• “PLC Coder: Report” on page 12-31

12 Configuration Parameters for Simulink PLC Coder Models

12-2

PLC Coder: General

In this section...

“PLC Coder: General Tab Overview” on page 12-3
“Target IDE” on page 12-4
“Show full target list” on page 12-7
“Target IDE Path” on page 12-9
“Code Output Directory” on page 12-11
“Generate testbench for subsystem” on page 12-12

 PLC Coder: General

12-3

PLC Coder: General Tab Overview

Set up general information about generating Structured Text code to download to target
PLC IDEs.

Configuration

To enable the Simulink PLC Coder options pane, you must:

1 Create a model.
2 Add either an Atomic Subsystem block, or a Subsystem block for which you have

selected the Treat as atomic unit check box.
3 Right-click the subsystem block and select PLC Code > Options.

Tip

In addition to configuring parameters for the Simulink PLC Coder model, you can
also use this dialog box to generate Structured Text code and test bench code for the
Subsystem block.

See Also

“Prepare Model for Structured Text Generation” on page 1-7

“Generate Structured Text from the Model Window” on page 1-14

12 Configuration Parameters for Simulink PLC Coder Models

12-4

Target IDE

Select the target IDE for which you want to generate code. This option is available on the
PLC Code Generation node in the Configuration Parameters window.

The default Target IDE list shows a reduced subset of targets. To customize this list
and specify IDEs that you use more frequently, use the plccoderpref function. See
plccoderpref.

To see all supported target IDEs, select the option Show full target list. See “Show full
target list” on page 12-7.

Settings

Default: 3S CoDeSys 2.3

3S CoDeSys 2.3

Generates Structured Text (IEC 61131-3) code for 3S-Smart Software Solutions
CoDeSys Version 2.3.

3S CoDeSys 3.3

Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions
CoDeSys Version 3.3.

3S CoDeSys 3.5

Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions
CoDeSys Version 3.5.

B&R Automation Studio 3.0

Generates Structured Text code for B&R Automation Studio 3.0.
Beckhoff TwinCAT 2.11

Generates Structured Text code for Beckhoff TwinCAT 2.11 software.
KW-Software MULTIPROG 5.0

Generates Structured Text code in PLCopen XML for KW-Software MULTIPROG
5.0.

Phoenix Contact PC WORX 6.0

Generates Structured Text code in PLCopen XML for Phoenix Contact PC WORX 6.0.
Rockwell RSLogix 5000: AOI

Generates Structured Text code for Rockwell Automation RSLogix 5000 using Add-
On Instruction (AOI) constructs.

 PLC Coder: General

12-5

Rockwell RSLogix 5000: Routine

Generates Structured Text code for Rockwell Automation RSLogix 5000 routine
constructs.

Siemens SIMATIC Step 7 5.4

Generates Structured Text code for Siemens SIMATIC STEP 7 5.4.
Siemens TIA Portal

Generates Structured Text code for Siemens TIA Portal.
Siemens TIA Portal: Double Precision

Generates Structured Text code for Siemens TIA Portal. The code uses LREAL type
for double data type in the model and can be used on Siemens PLC devices that
support the LREAL type.

Generic

Generates a pure Structured Text file. If the target IDE that you want is not
available for the Simulink PLC Coder product, consider generating and downloading
a generic Structured Text file.

PLCopen XML

Generates Structured Text code formatted using PLCopen XML standard.
Rexroth Indraworks

Generates Structured Text code for Rexroth IndraWorks version 13V12 IDE.
OMRON Sysmac Studio

Generates Structured Text code for OMRON® Sysmac® Studio Version 1.04, 1.05, or
1.09.

Tip

• Rockwell Automation RSLogix 5000 routines represent the model hierarchy using
hierarchical user-defined types (UDTs). UDT types preserve model hierarchy in the
generated code.

• The coder generates code for reusable subsystems as separate routine instances.
These subsystems access instance data in program tag fields.

Command-Line Information
Parameter: PLC_TargetIDE
Type: string
Value: 'codesys23' | 'codesys33' | 'codesys35' | 'rslogix5000' |
'rslogix5000_routine' | 'brautomation30' | 'multiprog50' | 'pcworx60' |

12 Configuration Parameters for Simulink PLC Coder Models

12-6

'step7' | 'plcopen' | 'twincat211' | 'generic' | 'indraworks' | 'omron' |
'tiaportal' | 'tiaportal_double'
Default: 'codesys23'

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: General

12-7

Show full target list

View the full list of supported target IDEs in the Target IDE drop-down list. For more
information, see “Target IDE” on page 12-4. This option is available on the PLC Code
Generation node in the Configuration Parameters window.

Instead of viewing the full list each time to select an IDE that is not present in the
reduced Target IDE list, you can add this IDE to the reduced list. To specify your own
reduced Target IDE list, use the plccoderpref function. See plccoderpref.

Settings

Default: off

 On
The Target IDE list displays all supported IDEs. For more information, see
“Supported IDE Platforms” on page 1-5.

 Off
The Target IDE list displays only the more commonly used IDEs. The default subset
contains the following IDEs:

• codesys23 — 3S-Smart Software Solutions CoDeSys Version 2.3 (default) target
IDE

• rslogix5000 — Rockwell Automation RSLogix 5000 Series target IDE for AOI
format

• step7 — Siemens SIMATIC STEP 7 Version 5 target IDE
• omron — OMRON Sysmac Studio
• plcopen — PLCopen XML target IDE

You can change this default reduced Target IDE list using the plccoderpref
function.

Command-Line Information
Parameter: PLC_ShowFullTargetList
Type: string
Value: 'on' | 'off'
Default: 'off'

12 Configuration Parameters for Simulink PLC Coder Models

12-8

You can change the contents of the reduced Target IDE list using the plccoderpref
function. See plccoderpref.

 PLC Coder: General

12-9

Target IDE Path

Specify the target IDE installation path. The path already specified is the default
installation path for the target IDE. Change this path if your IDE is installed in a
different location. This option is available on the PLC Code Generation node in the
Configuration Parameters window.

Settings

Default: C:\Program Files\3S Software

C:\Program Files\3S Software

Default installation path for 3S-Smart Software Solutions CoDeSys software Version
2.3.

C:\Program Files\3S CoDeSys

Default installation path for 3S-Smart Software Solutions CoDeSys software Version
3.3.

C:\Program Files\BrAutomation

Default installation path for B&R Automation Studio 3.0 software.
C:\TwinCAT

Default installation path for Beckhoff TwinCAT 2.11 software.
C:\Program Files\KW-Software\MULTIPROG 5.0

Default installation path for KW-Software MULTIPROG 5.0 software.
C:\Program Files\Phoenix Contact\Software Suite 150

Default installation path for Phoenix Contact PC WORX 6.0 software.
C:\Program Files\Rockwell Software

Default installation path for Rockwell Automation RSLogix 5000 software.
C:\Program Files\Siemens

Default installation path for Siemens SIMATIC STEP 7 5.4 software.
C:\Program Files\Siemens\Automation

Default installation path for Siemens TIA Portal software.

Tip

• When you change the Target IDE value, the value of this parameter changes.

12 Configuration Parameters for Simulink PLC Coder Models

12-10

• If you right-click the Subsystem block, the PLC Code > Generate and Import
Code for Subsystem command uses this value to import generated code.

• If your target IDE installation is standard, do not edit this parameter. Leave it as the
default value.

• If your target IDE installation is nonstandard, edit this value to specify the actual
installation path.

• If you change the path and click Apply, the changed path remains for that target IDE
for other models and between MATLAB sessions. To reinstate the factory default, use
the command:

plccoderpref('plctargetidepaths','default')

Command-Line Information

See plccoderpref.

See Also

“Import Structured Text Code Automatically” on page 1-24

 PLC Coder: General

12-11

Code Output Directory

Enter a path to the target folder into which code is generated. This option is available on
the PLC Code Generation node in the Configuration Parameters window.

Settings

Default: plcsrc subfolder in your working folder

Command-Line Information
Parameter: PLC_OutputDir
Type: string
Value: string
Default: 'plcsrc'

See Also

“Generate Structured Text from the Model Window” on page 1-14

12 Configuration Parameters for Simulink PLC Coder Models

12-12

Generate testbench for subsystem

Specify the generation of test bench code for the subsystem. This option is available on
the PLC Code Generation node in the Configuration Parameters window.

Settings

Default: off

 On
Enables generation of test bench code for subsystem.

Disables generation of test bench code for subsystems.

Dependency

This parameter is disabled if your model has absolute time temporal logic.

Command-Line Information
Parameter: PLC_GenerateTestbench
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Comments

12-13

PLC Coder: Comments

In this section...

“Comments Overview” on page 12-14
“Include comments” on page 12-14
“Include block description” on page 12-15
“Simulink block / Stateflow object comments” on page 12-16
“Show eliminated blocks” on page 12-17

12 Configuration Parameters for Simulink PLC Coder Models

12-14

Comments Overview

Control the comments that the Simulink PLC Coder software automatically creates and
inserts into the generated code.

See Also

“Generate Structured Text from the Model Window” on page 1-14

Include comments

Specify which comments are in generated files. This option is available on the PLC Code
Generation > Comments node in the Configuration Parameters window.

Settings

Default: on

 On
Places comments in the generated files based on the selections in the Auto
generated comments pane.

If you create links to requirements documents from your model using the Simulink
Verification and Validation software, the links also appear in generated code
comments.

 Off
Omits comments from the generated files.

Command-Line Information
Parameter: PLC_RTWGenerateComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Comments

12-15

Include block description

Specify which block description comments are in generated files. This option is available
on the PLC Code Generation > Comments node in the Configuration Parameters
window.

Settings

Default: on

 On
Places comments in the generated files based on the contents of the block properties
General tab.

 Off
Omits block descriptions from the generated files.

Command-Line Information
Parameter: PLC_PLCEnableBlockDescription
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• “Propagate Block Descriptions to Code Comments” on page 1-19
• “Generate Structured Text from the Model Window” on page 1-14

12 Configuration Parameters for Simulink PLC Coder Models

12-16

Simulink block / Stateflow object comments

Specify whether to insert Simulink block and Stateflow object comments. This option
is available on the PLC Code Generation > Comments node in the Configuration
Parameters window.

Settings

Default: on

 On
Inserts automatically generated comments that describe block code and objects. The
comments precede that code in the generated file.

 Off
Suppresses comments.

Command-Line Information
Parameter: PLC_RTWSimulinkBlockComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Comments

12-17

Show eliminated blocks

Specify whether to insert eliminated block comments. This option is available on the
PLC Code Generation > Comments node in the Configuration Parameters window.

Settings

Default: off

 On
Inserts statements in the generated code from blocks eliminated as the result of
optimizations (such as parameter inlining).

 Off
Suppresses statements.

Command-Line Information
Parameter: PLC_RTWShowEliminatedStatement
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-14

12 Configuration Parameters for Simulink PLC Coder Models

12-18

PLC Coder: Optimization

In this section...

“Optimization Overview” on page 12-18
“Signal storage reuse” on page 12-19
“Remove code from floating-point to integer conversions that wraps out-of-range values”
on page 12-21
“Loop unrolling threshold” on page 12-22

Optimization Overview

Select the code generation optimization settings.

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Optimization

12-19

Signal storage reuse

Reuse signal memory. This option is available on the PLC Code Generation >
Optimization node in the Configuration Parameters window.

Settings

Default: on

 On
Simulink PLC Coder software reuses memory buffers allocated to store block input
and output signals, reducing the memory requirement of your real-time program.

 Off
Simulink PLC Coder software allocates a separate memory buffer for each block's
outputs. This allocation makes block outputs global and unique, which in many cases
significantly increases RAM and ROM usage.

Tips

• This option applies only to signals with storage class Auto.
• Signal storage reuse can occur among only signals that have the same data type.
• Clearing this option can substantially increase the amount of memory required to

simulate large models.
• Clear this option if you need to:

• Debug a C-MEX S-function.
• Use a Floating Scope or a Display block with the Floating display option

selected to inspect signals in a model that you are debugging.
• If Signal storage reuse is enabled and you attempt to use a Floating Scope or

floating Display block to display a signal whose buffer has been reused, Simulink PLC
Coder software opens an error dialog.

Command-Line Information

Parameter:PLC_PLCEnableVarReuse
Type: string
Value: 'on' | 'off'
Default: 'on'

12 Configuration Parameters for Simulink PLC Coder Models

12-20

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Optimization

12-21

Remove code from floating-point to integer conversions that wraps out-
of-range values

Enable code removal for efficient casts. This option is available on the PLC Code
Generation > Optimization node in the Configuration Parameters window.

Settings

Default: on

 On
Simulink PLC Coder software removes code from floating-point to integer
conversions.

 Off
Simulink PLC Coder software does not remove code from floating-point to integer
conversions.

Tips

Use this parameter to optimize code generation.

Command-Line Information

Parameter: PLC_PLCEnableEfficientCast
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-14

12 Configuration Parameters for Simulink PLC Coder Models

12-22

Loop unrolling threshold

Specify the minimum signal or parameter width for which a for loop is generated.
This option is available on the PLC Code Generation > Optimization node in the
Configuration Parameters window.

Settings

Default: 5

Specify the array size at which the code generator begins to use a for loop instead of
separate assignment statements to assign values to the elements of a signal or parameter
array.

When there are perfectly nested loops, the code generator uses a for loop if the product
of the loop counts for all loops in the perfect loop nest is greater than or equal to the
threshold.

Command-Line Information

Parameter: PLC_RollThreshold
Type: string
Value: any valid value
Default: '5'

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Symbols

12-23

PLC Coder: Symbols

In this section...

“Symbols Overview” on page 12-24
“Maximum identifier length” on page 12-25
“Use the same reserved names as Simulation Target” on page 12-26
“Reserved names” on page 12-27
“Externally Defined Symbols” on page 12-28
“Preserve Alias Type Names for Data Types” on page 12-28

12 Configuration Parameters for Simulink PLC Coder Models

12-24

Symbols Overview

Select the automatically generated identifier naming rules.

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Symbols

12-25

Maximum identifier length

Specify the maximum number of characters in generated function, type definition, and
variable names. This option is available on the PLC Code Generation > Symbols node
in the Configuration Parameters window.

Settings

Default: 31

Minimum: 31

Maximum: 256

You can use this parameter to limit the number of characters in function, type definition,
and variable names. Many target IDEs have their own restrictions. The Simulink PLC
Coder software complies with target IDE limitations.

Command-Line Information
Parameter: PLC_RTWMaxIdLength
Type: int
Value: 31 to 256
Default: 31

See Also

“Generate Structured Text from the Model Window” on page 1-14

12 Configuration Parameters for Simulink PLC Coder Models

12-26

Use the same reserved names as Simulation Target

Specify whether to use the same reserved names as those specified in the Simulation
Target > Symbols pane. This option is available on the PLC Code Generation >
Symbols node in the Configuration Parameters window.

Settings

Default: off

 On
Enables using the same reserved names as those specified in the Simulation Target
> Symbols pane pane.

 Off
Disables using the same reserved names as those specified in the Simulation
Target > Symbols pane pane.

Command-Line Information
Parameter: PLC_RTWUseSimReservedNames
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Symbols

12-27

Reserved names

Enter the names of variables or functions in the generated code that you do not want to
be used. This option is available on the PLC Code Generation > Symbols node in the
Configuration Parameters window.

Settings

Default: ()

This action changes the names of variables or functions in the generated code to avoid
name conflicts with identifiers in custom code. Reserved names must be shorter than 256
characters.

Tips

• Start each reserved name with a letter or an underscore.
• Each reserved name must contain only letters, numbers, or underscores.
• Separate the reserved names using commas or spaces.

Command-Line Information
Parameter: PLC_RTWReservedNames
Type: string
Value: string
Default: ''

See Also

“Generate Structured Text from the Model Window” on page 1-14

12 Configuration Parameters for Simulink PLC Coder Models

12-28

Externally Defined Symbols

Specify the names of identifiers for which you want to suppress definitions. This option
is available on the PLC Code Generation > Symbols node in the Configuration
Parameters window.

Settings

Default: ()

This action suppresses the definition of identifiers, such as those for function blocks,
variables, constants, and user types in the generated code. This suppression allows the
generated code to refer to these identifiers. When you import the generated code into the
PLC IDE, you must provide these definitions.

Tips

• Start each name with a letter or an underscore.
• Each name must contain only letters, numbers, or underscores.
• Separate the names using spaces or commas.

Command-Line Information
Parameter: PLC_ExternalDefinedNames
Type: string
Value: string
Default: ''

See Also

• “Generate Structured Text from the Model Window” on page 1-14
• “Integrate Externally Defined Symbols” on page 7-2
• Integrating User Defined Function Blocks, Data Types, and Global

Variables into Generated Structured Text

Preserve Alias Type Names for Data Types

Specify that the generated code must preserve alias data types from your model. This
option is available on the PLC Code Generation > Symbols node in the Configuration
Parameters window.

 PLC Coder: Symbols

12-29

Using the Simulink.AliasType class, you can create an alias for a built-in Simulink
data type. If you assign an alias data type to signals and parameters in your model,
when you use this option, the generated code uses your alias data type to define variables
corresponding to the signals and parameters.

For instance, you can create an alias SAFEBOOL from the base data type boolean. If
you assign the type SAFEBOOL to signals and parameters in your model, the variables
in the generated code corresponding to those signals and parameters also have the
type SAFEBOOL. Using this alias type SAFEBOOL, you can conform to PLCOpen safety
specifications that suggest using safe data types for differentiation between safety-
relevant and standard signals.

Settings

Default: off

 On
The generated code preserves alias data types from your model.

For your generated code to be successfully imported to your target IDE, the IDE must
support your alias names.

 Off
The generated code does not preserve alias types from your model. Instead, the
base type of the Simulink.AliasType class determines the variable data type in
generated code.

Tips

The alias you define for a Simulink type must have the same semantic meaning as the
base Simulink type. It must not be a data type already supported in Structured Text
and semantically different from the base Simulink type. For instance, WORD is a data
type supported in Structured Text but is semantically different from an integer type.
If you define an alias WORD for a Simulink built-in integer type, for instance uint16,
and preserve the alias name, the type WORD that appears in your generated code will be
used semantically as a WORD and not as an INT. The generated code will have a different
meaning from that of the model.

Command-Line Information
Parameter: PLC_PreserveAliasType
Type: string

12 Configuration Parameters for Simulink PLC Coder Models

12-30

Value: 'on' | 'off'
Default: 'off'

 PLC Coder: Report

12-31

PLC Coder: Report

In this section...

“Report Overview” on page 12-31
“Generate traceability report” on page 12-31
“Generate model Web view” on page 12-33

Report Overview

Specify whether a report must be produced, following code generation. Control the
appearance and contents of the report.

The code generation report shows a mapping between Simulink model objects and
locations in the generated code. The report also shows static code metrics about files,
global variables and function blocks.

See Also

“Generate Structured Text from the Model Window” on page 1-14

Generate traceability report

Specify whether to create a code generation report. This option is available on the PLC
Code Generation > Report node in the Configuration Parameters window.

Settings

Default: off

 On
Creates code generation report as HTML file.

12 Configuration Parameters for Simulink PLC Coder Models

12-32

 Off
Suppresses creation of code generation report.

Command-Line Information
Parameter: PLC_GenerateReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-14

 PLC Coder: Report

12-33

Generate model Web view

Include the model Web view in the code generation report to navigate between the code
and the model within the same window. This option is available on the PLC Code
Generation > Report node in the Configuration Parameters window.

You can share your model and generated code outside of the MATLAB environment. You
need a Simulink Report Generator license to include a Web view of the model in the code
generation report.

Settings

Default: Off

 On
Include model Web view in the code generation report.

 Off
Omit model Web view in the code generation report.

Command-Line Information
Parameter: PLC_GenerateWebView
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-14

